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1 Relationship between the two quantitative variables

Two well-known methods to examine the relationship between the two quantitative
variables are calculating correlation and fitting the regression models.

First of all, you have to draw scattergram. Let’s consider the relationship between
height and the span of spread writing hand in survey data set.

In Rgui console, type plot(Wr.Hnd ~ Height, data=survey). If you would
like to see the relationship separately for males and females, use pch=as.integer(Sex)
option.

In EZR, select [Tools], [Load package(s) ...], then select MASS and click [OK].
Next, select [File], [Read data set from an attached package], then double-
click MASS in Package box and double-click survey in Data set box, then click
[OK]. Next, select [Graphs and tables], [Scatterplot], then select Height as [x-
variable] and Wr . Hnd as [y-variable], check off the box beside ‘“Least-squares
line”, and click [OK]. If you like to plot with different markers for males
and females, click the [Plot by groups...] button and select Sex and check off
the box besides [Plot lines by group] and click [OK] before the clicking final
[OK].
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1.1 The difference between correlation and regression

The correlation means the strength of the relationship between 2 quantitative variables,
and the regression means how much the variance of a variable can be explained by the
variance of the other variable, by fitting the linear model.

1.2 Correlation analysis

The relationship shown as scatterplot may be apparent or spurious correlation. The
researcher must always pay attention to it.

To show the strength of correlation, Pearson’s product moment correlation coeffi-
cients are usually used. When one variable becomes larger and the other also becomes
larger, the correlation is positive (The value of Pearson’s correlation coefficient is also



positive). When one variable becomes larger and the other becomes smaller, the corre-
lation is negative (The value of Pearson’s correlation coefficient is also negative). As
nonparametric (using rank) version, the Spearman’s rank correlation coefficients are
also used.

The definition of the Pearson’s correlation coefficient r between the 2 variables X
and Y is,
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The null-hypothesis that the r is not different from O can be tested using f, value
defined as follows and ¢-distribution with n — 2 degree of freedom.
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In Rgui console, to calculate the Pearson’s correlation coefficient between heights

and spread writing hand spans with null-hypothesis testing, type as follows. For Spear-
man’s rank correlation coeffients, method="spearman" option can be used.

fo =

cor.test(survey$Height, survey$Wr.Hnd)

The confidence intervals for Spearman’s rank correlation can be obtained using
fmsb package’s spearman.ci.sas() function as follows.

library(fmsb)
spearman.ci.sas(survey$Height, survey$ir.Hnd)
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In EZR, select [Statistical analysis], [Continuous variables], [Test for Pear-
son’s correlation], then select Height and Wr.Hnd (clicking with pressing
), and click [OK] (If you need Spearman’s rank correlation, you need
to use [Statistical analysis], [Nonparametric tests], [Spearman’s rank corre-
lation test] menu). The following result will appear in the Output Window.
Scattergram with regression line is automatically drawn, but it should be
igrnored. In EZR, confidence interbals for Spearman’s rank correlation is
not given.
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Pearson’s product-moment correlation

data: survey$Height and survey$Wr.Hnd
t = 10.7923, df = 206, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.5063486 0.6813271
sample estimates:
cor
0.600991
(skip)

-

Among the output of EZR, you only need to refer the bottom line as summary. The
estimated Pearson’s correlation coefficient r is 0.601 with 95% confidence interval of
[0.506, 0.681]. The p-value of 8.23e-22 means that under the null hypothesis (no
correlation), the probability to happen to get this or more related data is 8.23 x 10722
According to the traditional criteria to judge the strength of correlation (more than 0.7

‘strong’, 0.4-0.7 ‘moderate’, 0.2-0.4 ‘weak’), there is a moderate correlation.

To calculate the correlations for males and females separately, you can specify

subset. In Rgui console, it’s easy to calculate those as follows.

males <- subset(survey, Sex=="Male")
cor.test(males$Height, males$Wr.Hnd)
females <- subset(survey, Sex=="Female")
cor.test(females$Height, females$Wr.Hnd)

In EZR, select [Statistical analysis], [Continuous variables], [Test for Pear-
son’s correlation], and select Height and Wr.Hnd (clicking with pressing
), and type Sex=="Male" in the box below “Condition to limit samples
for analysis ...”, then click [OK] for males. For females, you can do almost

similarly, but type Sex=="Female" instead of Sex=="Male" in the box.

For males, the result is obtained below. The correlation coefficient is still signifi-
cantly different from zero, but according to traditional judgement, it means weak corre-
lation. The correlation for the data combining males and females may be exaggerated

due to the different data ranges of both sexes being pooled.

correlation coefficient = 0.601, 95% CI 0.506-0.681, p.value =j

.23e-22

[correlation coefficient = 0.385, 95% CI 0.209-0.537, p.value =}.99e—®5

1.3 Probability ellipse and Hotelling’s T>

EZR does not support to draw, but probability ellipse is useful to see the correlation

status. Using car package’s dataEllipse () function, it’s possible.



library(car)

z <- survey[, c("Height", "Wr.Hnd", "Sex")]

z <- subset(z, complete.cases(z)) # Missing values have to be omitted.
layout (t(1:2))

dataEllipse(z$Height, z$Wr.Hnd, levels=0.95)

dataEllipse(z$Height, z$Wr.Hnd, z$Sex, levels=0.95)
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The difference between two probability ellipses can be tested by Hotelling’s T2.

-
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if (require(Hotelling)==FALSE) {
install.packages("Hotelling", dep=TRUE)
library(Hotelling)
}
Z <- split(z[, c("Height", "Wr.Hnd")], z[, "Sex"])
print(hotelling.test(Z[[1]1, Z[[211))
)
4 N
z2 <- survey[, c("Age", "Pulse", "Sex")]

z2 <- subset(z2, complete.cases(z2)) # Exclude missing values to draw p
dataEllipse(z2$Age, z2$Pulse, z2$Sex, levels=0.95)

Z2 <- split(z2[, c("Age", "Pulse")], z2[, "Sex"])
print(hotelling.test(Z2[[1]]1, Z2[[2]1]1))
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1.4 Fitting a regression model

The principle of fitting regression models to observed data is that the variance of a
dependent variable can be mostly explained by the variance of independent variables.
If the explanatory power is enough, substituting the independent variables by actual
values will serve a corresponding projection or estimation of the dependet variable.
Reverse calculation is also possible, as in the case of so-called “working curve”. A
working curve (but often line, sometimes with transformation) provides the equation
as regression model for the series of observed absorptions for fixed concentrations.
Usually a working line can be used when its explanatory power is more than 98%.

If the zero-adjustment is done by standard solution with zero concentration, the
regression line must go through the origin (therefore, intercept must be zero), otherwise
(zero-adjustment is done by pure water) the regression line may not go through the
origin.

For example, let the series of absorption for the standard solutions with fixed con-
centrations (0, 1, 2, 5, 10 ug/¢) as (0.24, 0.33, 0.54, 0.83, 1.32), when the zero-
adjustment was done by pure water. If we denote the absorption variable as y and
the concentration variable as x, the regression model can be written as y = bx + a. The
coeflicients a and b (a is called as “intercept” and b is called as “regression coefficient”)



should be estimated by the least square method to find the set of ¢ and b minimizing
the sum of square errors,

5
fla,b) = > (i - bx; - a)?
i=1

Solving the equations that each partial diffential of f(a, b) by a and b equals 0O, then
we can obtain the following 2 equations.
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Using these a and b values and measured absorption (for example 0.67), we can
estimate the unknown concentration of sample solution. To note, the measured absorp-
tion of any sample must range within the values for standard solutions. The regression
model has no guarantee to stand outrange of standard solutions'.

In Rgui console, we can apply 1Im() (linear model) to estimate the fitted regression
model as follows.

b=

y <- c(0.24, 0.33, 0.54, 0.83, 1.32)

X <- c(, 1, 2, 5, 10)

# apply linear model fitting

res <- Im(y ~ x)

# show the summary of result

summary (res)

# draw scattergram with regression line
plot(y ~ x)

abline(res)

# calculate the concentration corresponding to the absorption of 0.67
(0.67 - res$coef[1])/res$coef[2]

The summary of result is shown below.

!Such an extrapolation is not recommended. Usually concentrating or diluting the solutions to remeasure
the absorption is recommended.
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Call:
Im(formula = y ~ x)

Residuals:
1 2 3 4 5
-0.02417 -0.04190 0.06037 0.02718 -0.02147

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.26417 0.03090 8.549 0.003363 **
X 0.10773 0.00606 17.776 0.000388 ***

Signif. codes: 0 *** 0.001 ** .01 * 0.605 . 0.1 1

Residual standard error: 0.04894 on 3 degrees of freedom

Multiple R-squared: 0.9906, Adjusted R-squared: 0.9875

F-statistic: 316 on 1 and 3 DF, p-value: 0.0003882
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We can see that the estimated intercept was a = 0.26417 and regression coefficient

was b = 0.10773, and the model explains 98.75% (0.9875) of the data, which is shown

in Adjusted R-squared. The p-value means the result (significant probability) of

testing the null-hypothesis (the extent how the variance of absorption can be explained

by the model is similar to error variance).
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The concentration for the absorption of 0.67 is given at last as 3.767084. Therefore,
we can conclude that the concentration of the solution, of which absorption was 0.67,
was 3.8 ug/¢.
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In Remdr, the data must be entered as a Data Set. Select [Data], [New data

set] and type workingcurve in the box of “Enter name for data set:”. After
the “Data Editor”” window appears, click [varl] and type y in the ‘“variable
name” box and check the radio button of “numeric” as type and press
key. Next, change [var2] to [x] similarly. Then enter the data into each cells,
and close the window (usually select [File], [Close]).
To draw scattergram with regression line, select [Graphs], [Scatterplot...],
then select x as “x-variable” and y as “y-variable”. Check off the box beside
“Smooth Line” and click [OK].
To apply a linear regression model fitting, select [Statistics], [Fit models],
[Linear regression], then select y as “response variable” and x as “Explana-
tory variables”. Clicking [OK] leads to the summary of results shown in the
Output Window.
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For other situations than working curves, linear regression models can be applied
in a similar manner. Let’s go back to the example of survey data set (Of course, the
MASS package must be loaded before using survey data set). If we want to explain the
variance of the span of writing hand by the height, we can apply the linear regression
model to the survey data set by typing as follows in Rgui console.

res <- Ilm(Wr.Hnd ~ Height, data=survey)
summary (res)

In Remdr, after activating survey as already mentioned, select [Statistics],
[Fit models], [Linear regression], then select Wr.Hnd as “response variable”
and Height as “Explanatory variables”. Clicking [OK] gives the summary
result.

1.5 Testing the stability of estimated coefficients

When the response variable has virtually no relationship with the explanatory variable,
the sums of squared residuals for many possible regression lines (any line on the cen-
troid) may give almost same values. In other words, the estimated intercept and slope
are very unstable in such situation. To evaluate the stability of parameters of regres-
sion line (regression coefficient b and intercept a), #y values are usually used. Let the
relationship between y and x be expressed by the equation of y = ay + box + e, and
assume the error term e obeying the normal distribution with mean 0 and variance o2,
the estimated regression coefficient @ would obey the normal distribution of mean ay,
variance (o2/n)(1 + M?/V), where M and V are the mean and the variance of x. Then
the sum of squared residuals Q divided by the variance of error o? (say, Q/ o?) obeys
the chi-square distribution with degree of freedom (n—2). Therefore, the #y(a() defined
as follows obeys the #-distribution with the degree of freedom (n — 2).

Vnn —2)(a — ag)
V(1 +M?2/V)Q

to(ao) =



However, to calculate this value, @y must be known. Under the null hypothesis of
ap = 0, 79(0) calculated from the observed data is almost matching with #y(ap) and
obeys the z-distribution with degree of freedom (n — 2). The absolute value of #,(0) is
less than the 97.5% point of #-distribution at the 95% probability. We can also get the
significance probability using the distribution function (cumulative probability density
function).

Similarly, we can calculate #,(b) for regression coefficient as follows.

vn(n —2)Vb
Y

Using the relationship that the #,(b) obeys the r-distribution with degree of freedom
(n —2), we can calculate the significance probability.

If the significant probability is very small (usually less than 5%, this criteria is
called as the significance level of the test), we can say that ag or by is significantly
different from zero, which means the stability of estimated ag or by.

In both Rgui concole and Remdr, the significance probabilities are shown at the
column of Pr(>|t]).

10(b) =

2 Applied regression models

2.1 Multiple regression model

The explanatory variables can include two or more variables. In such case, the model
is called as “multiple regression model”. There are some points to pay attention, but
basically the explanatory variables can be given as the right terms of linear model,
connected by +. For example, for the same data previously described, if you would like
to explain the variance of the span of writing hand (Wr.Hnd) by the variance of height
(Height) and the variance of the span of non-writing hand (NW.Hnd), you may type as
follows in Rgui console.

res <- lm(Wr.Hnd ~ Height + NW.Hnd, data=survey)
summary (res)

-~

In Remdr, select [Statistics], [Fit models], [Linear regression], then select
Wr.Hnd as “response variable”, and Height and NW.Hnd with pressing
key as “Explanatory variables”. Clicking [OK] leads to the summary of re-
sults shown in the Output Window. In EZR, [Statistical analysis], [Continu-
ous variables], [Linear regression], then specify the variables similarly as the
case of Remdr.

In the multiple regression model, the estimated regression coefficients are the “par-
tial regression coefficients”, which adjust the effects of other explanatory variables on
the response variable to obtain each explanatory variable’s own effect on the response
variable. But the values of partial regression coefficients depend on the absolute scale



of each variable, so that those cannot show the relative strength of effect on the re-
sponse variable for each explanatory variable. For such comparison, the standardized
partial regression coefficients can be used. In Rgui console, type as follows, then you
obtain the estimates as stb for the standardized partial regression coefficients.

sdd <- c(0,sd(res$model$Height),sd(res$model$NW.Hnd))
stb <- coef(res)*sdd/sd(res$model$ir.Hnd)
stb

The Remdr does not provide this as a menu item, but you can do so by editing
the commands in script window, selecting lines and click [Submit]. EZR also
does not provide this. However, the model remains as the named object such
as RegModel.1, which is shown at the top-right label of [Model:]. If the name
of the model is RegModel. 1, you can type res <- RegModel.l before the 3
line scripts shown above, then select 4 lines and click [Submit].
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Instead of calculating standardized partial regression coefficients, squared partial
correlation coefficients can be used to show the relative contribution of explanatory
variables to the response variable. To get the squared partial correlation coefficients,
you can type as below.

SS <- anova(res)["Sum Sq"]
SS/sum(SS)

2.2 Evaluation of the goodness of fit

It is always necessary to evaluate the goodness of fit of the regression model to the
data.

After the least square estimation of a and b, we can define z; = a + bx; for each x.
Then e; = y; — z; can be considered as “residuals”. The residuals is the remaining part
of the variance of y;, that could not be explained by the regression model. Thus, the
greater the residuals are, the worse the goodness of fit is. We would like to treat the
both plus and minus residuals in its absolute distance, so that we can define the sum of
squared residuals, Q, as follows.
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The sum of squared residuals Q is the scale to show badness of fit of the regression
model. Q divided by 7 is called as residual variance (we will denote it as var(e)).
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Among the values of var(e) and the variance of y (var(y)) and Pearson’s product
limit correlation coefficient r, the following equation always stands.

var(e) = var(y)(1 — r2)
Therefore,
B var(e)
var(y)

=1

Thus the closer to 1 72 is, the goodness of fit is higher. In that meaning, r? is called
as “deterministic coefficient” or “the attributable proportion of x”.

Since r? becomes larger depending on the number of explanatory variables, usually
the r? will be adjusted for the degree of freedom. That is, Adjusted R-Squared in
the summary of results.

As another indicator for the goodness of fit, the AIC (Akaike information criterion)
is sometimes used (particularly in multiple regression models), which can be calculated
in R, using the resulted object of linear model fitting (for example, res of the example
above). In Rgui console, type AIC(res), then you can get the AIC value. Here I don’t
explain any more, but many online materials and books can be found?.

2.3 Paying attention in fitting regression model

The target variables may be measurements including error. In such situation, it is not
valid to assume one as response variable and the other as explanatory variable. Gen-
erally speaking, if we can assume the direction of effect like the stature determining
weight and not vise versa, the regression is possible where the stature is explanatory
variable and the weight is response variable. However, when the explanatory variable
includes measurement error, the explanatory power of the regression model become
worse. In addition, the regression models with opposite combination of response vari-
able and explanatory variable do not match. Thus, it is very important that the deter-
mination of which variable is response variable shoule be based on the direction of
causal relationship, with enough reference to previous studies and clinical/biological
knowledge.

Another point to be noticed is extrapolation of regression model for prediction.
Especially the extrapolation should be avoided when you apply the working curve for
prediction, because the linearity of the working curve is only confirmed within the
range of standard material concentrations. The increase of absorbance tends to be
smaller in higher concentration ranges due to saturation of molecules, the linearity is
lost there. If you measure the samples with high concentration, you must dilute them
into the ranges of standard materials.

2http://en.wikipedia.org/wiki/Akaike_information_criterion is the explanation in the
Wikipedia.
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~ Exercise

A built-in dataset airquality includes the air quaility data in New York from May to
September 1973. The variables are Ozone for ozone gas concentration in ppb, Solar.R
for solar radiation in lang, Wind for wind speed in mph, Temp for atomospheric temperature
in degree F, Month in number (5-9) and Day in number (1-31).

Let’s fit the regression model for this data with ozone gas concentration as response variable
and solar radiation as explanatory variable.

G

~

J

In Rgui console, enter the following 4 lines.

plot(Ozone ~ Solar.R, data=airquality)

res <- 1lm(Ozone ~ Solar.R, data=airquality)
abline(res)

summary (res)

f
In Remdr, at first, the airquality must be activated by select [Data], [Data

in packages], [Read data set from an attached packages ...], then double-click
datasets in the left panel and double-click airquality in the right panel,
then click [OK].

To draw scattergram, [Graphs], [Scatterplot ...], then select Solar.R as x-
variable and Ozone as y-variable. Check the box beside “Smooth Line” off,
and click [OK]. Then you will get the scattergram with a regression line.
To obtain the numerical result of regression model fitting, select [Statistics],
[Fit models ...], [Linear regression], then select Ozone as Response variable
and Solar.R as Explanatory variables, and click [OK]. Then you will see the
result in the Qutput window.

-

Both give the same results as follows.

Call:
Im(formula = Ozone ~ Solar.R, data = airquality)

Residuals:
Min 1Q Median 3Q Max
-48.292 -21.361 -8.864 16.373 119.136

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.59873 6.74790 2.756 0.006856 **
Solar.R 0.12717 0.03278 3.880 0.000179 ***
Signif. codes: 0 ’***’ §.001 '**’ .01 '*’ 0.05 .’ 0.1 " ' 1
Residual standard error: 31.33 on 109 degrees of freedom

(42 observations deleted due to missingness)
Multiple R-Squared: 0.1213,Adjusted R-squared: 0.1133
F-statistic: 15.05 on 1 and 109 DF, p-value: 0.0001793

12



The fitted regression model is Ozone = 18.599 + 0.127 - Solar.R, and the p-value
shown in the bottom line is 0.0001793, as the result of F-test. Therefore, the fitting of
the model can be judged as significant. However, the Adjusted R-squared shown
above line is 0.11, which means only about 10% of the variance of the Ozone concen-
tration can be explained by this model. We should judge the model is not so good.

To improve fitting, it may be possible to add more variables (for example, Wind
and/or Temp) as explanatory variables as the multiple regression model. In Rgui con-
sole, you can easily do so by typing the next 3 lines. Then you see about 60% of
Adjusted R-Squared value.

mres <- 1lm(Ozone ~ Solar.R + Wind + Temp, data=airquality)
summary (mres)
AIC(mres)

In Remdr, select [Statistics], [Fit models ...], [Linear model], then type Ozone
at the box to the left of ~ and type Solar.R + Wind + Temp at the box to the
right of ~, and click [OK]. In EZR, select [Statistical analysis], [Continuous
variables], [Linear models], then select Ozone as response variable and

2.4 Analysis of Covariance (ANACOVA/ANCOVA)

Let’s consider the situation below.

o There are 2 continuous variables X and Y, and 1 binary varialbe B.

e The aim is to test the null hypothesis that no significant difference of Y between
2 groups indicated by B. However, there is a significant correlation between X
and Y. The adjustment for X is needed to evaluate the difference of Y by B.

e The model is
Y Zﬂo +,31X+ﬂ2B +,812XB + &

o If B, is significantly different from 0, there is a significant interaction. The
correlation between X and Y is different by B. (In this case, regression analysis
should be separately conducted by the groups indicated by B.

o Otherwise, there is no significant interaction between X and B on Y. The model
may change as below.
Y=06+81X+5B+e

e (3, shows the effect of B on Y with adjusting the effect of X.

An example is available from https://minato.sip21lc.org/grad/sample3.dat.
The data includes the following variables.

REGION East Japan or West Japan
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PREF The names of prefectures in Japan

CAR1990 Number of cars for private property per 100 households in 1990
TA1989 Number of deaths by traffic accidets per 100,000 population in 1989
DIDP1985 Percentage of dwellers in DID (densely inhabiting disctrict) in 1985

The purpose of the analysis is to test the null-hypothesis that TA1989 is not signif-
icantly different by REGION. However, of course, CAR1990 should be correlated with
TA1989, and thus the ANACOVA should be conducted. The R code is shown below.

x <- read.delim("https://minato.sip21lc.org/grad/sample3.dat")
plot(TA1989 ~ CAR1990, pch=as.integer (REGION), data=x)

east <- 1m(TA1989 ~ CAR1990, data=subset(x, REGION=="East"))
summary (east)

abline(east, 1lty=1)

west <- 1m(TA1989 ~ CAR1990, data=subset(x, REGION=="West"))
summary (west)

abline(west, lty=2)

legend("bottomright", pch=1:2, lty=1:2, legend=c("East","West"))
summary (1m(TA1989 ~ REGION*CAR1990, data=x))

ac <- 1m(TA1989 ~ REGION+CAR1990, data=x)

summary (ac)

cfs <- dummy.coef(ac)

cfs[[1]] + cfs$CAR1990 * mean(ac$model$CAR1990) + cfs$REGION # For adjusted means

In EZR, select [File], [Import Data], [Read Data from File, Clipboard, or URL].
In the dialogue, type x to [Enter name for data set:], check Internet URL for [Lo-
cation of Data File], check Tabs for [Field Separator], then click [OK]. Then type
http://minato.sip21lc.org/grad/sample3.dat to [Internet URL] dialogue and
click [OK].

Then select [Statistical analysis], [Continuous variables], [ANCOVA]. In the next dia-
logue, select TA1989 as [Response Variable (pick one)], REGION as [Grouping variable
(pick one)], and CAR1990 as [Numeric variable for adjustment (pick one)] and click
[OK]. The result doesn’t include adjusted means, but the graph and the result of sig-
nificance test for each variable are automatically obtained.

N )
\
Anova Table (Type III tests)
Response: TA1989
Sum Sq Df F value Pr(GF)
(Intercept) 7.349 1 1.7857 0.18832
factor(REGION) 20.202 1 4.9091 0.03194 *
CAR1990 157.640 1 38.3061 0.0000001778 ***
Residuals 181.072 44
Signif. codes: 0 ’***’ §.001 '**’ §.01 '*’ 0.05 .’ 0.1 7 1
N )
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If the model name is AnovalModel. 1, you can type summary (AnovaModel.1) to
[R Script] window and press [Submit], them get the following result.

Call: \\
Im(formula = TA1989 ~ 1 + factor(REGION) + CAR1990, data = TempDF,

na.action = na.omit)
Residuals:

Min 1Q Median 3Q Max
-4.4792 -1.1700 -0.0155 1.5609 3.6357
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) -2.95787 2.21349 -1.336 0.1883
factor (REGION) [T.West] 1.52190 0.68689 2.216 0.0319 *
CAR1990 0.13475 0.02177 6.189 0.000000178 ***
Signif. codes: @0 ’'***’ §.001 ’'**’ 0.01 '*’ 0.605 .’ 0.1’ ' 1
Residual standard error: 2.029 on 44 degrees of freedom
Multiple R-squared: 0.4728,Adjusted R-squared: 0.4488
F-statistic: 19.73 on 2 and 44 DF, p-value: 0.0000007654 //

According to the result showing that the Estimate of factor (REGION) [T.West]
is 1.522 with p-value less than 0.05 and the Estimate of CAR1990 is 0.135 with p-
value less than 0.05, we can say the following 2 things.

o If the number of cars per household is same, the western region has 1.522 per
100,000 higher death rate than the eastern region.

o If the difference of the region is controlled, the increase of 1 car per 100 house-
holds leads the increase of 0.135 per 100,000 death rate due to traffic accident.
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2.5 Logistic regression analysis

The situation of the logistic regression is, the response variable is binary (occurrence
of the event or not), not continuous. Therefore, the response variable obeys binary
distribution, not normal distribution. For that purpose, glm() function with options of
family=binomial () is used.

Let’s consider an example of the presence of the bacteria H. influenzae in chil-
dren with otitis media in the Northern Territory of Australia. The data is included in
bacteria data set of MASS library. Included variables are shown below.

y presence or absence: a factor with levels n and y.

ap active/placebo: a factor with levels a and p.

hilo hi/low compliance: a factor with levels hi amd lo.
week numeric: week of test.

ID subject ID: a factor.

trt a factor with levels placebo, drug and drug+, a re-coding of ap and hilo.
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To evaluate the effects of drugs, compliance and duration on the presense or absence

of bacteria, the following R code can be used.

library(MASS)
data(bacteria)

res <- glm(y ~ ap + hilo + week, data=bacteria, family=binomial())

summary (res)
exp(coef(res))
exp(confint(res))
library(fmsb)
NagelkerkeR2(res)

The results can be obtained as follows.

~ summary(res)

Call:
glm(formula =

Deviance Residuals:

Min 1Q  Median 3Q Max
-2.3763 0.3813 0.5212 0.6576 1.1194
Coefficients:

Estimate Std. Error z value Pr(>|zl|)

(Intercept) 1.9278 0.3762 5.124 0.000000299 ***
ap[T.p] 0.8343 0.3816 2.186 0.02879 *
hilo[T.1lo] -0.5066 0.3546 -1.428 0.15317
week -0.1167 0.0443 -2.633 0.00845 **

Signif. codes: 0 ’'***’ §.001 ’**’ 0.01 '*’ 0.605 .’ 0.1’

(Dispersion parameter for binomial family taken to be 1)
217.38

202.90

on 219
on 216

Null deviance:
Residual deviance:
AIC: 210.9

degrees of freedom
degrees of freedom

Number of Fisher Scoring iterations: 4

Tl

~

y ~ ap + hilo + week, family = binomial(), data = bacteril

- J
£
-~ exp(coef(res)) ~
(Intercept) ap[T.p] hilo[T.lo] week
6.8743391  2.3032551 0.6025587 0.8898975 )

17



-~ exp(confint(res)) ~

2.5 % 97.5 %
(Intercept) 3.3962571 14.9415826
ap[T.p] 1.1138918 5.0266682
hilo[T.lo] ©0.2979555 1.2048297
week 0.8149128 0.9702764
J
e NagelkerkeR2(res) ~N
$N
[1] 220
$R2
[1] 0.1014725
- J

The result means that the active drug and longer duration of drug administration
have significantly lower odds ratio than 1 (ap[T.p]’s odds ratio is significantly higher
than 1, which means placebo having higher risk of otitis media than active drug).

The result should be shown as below.

95% C.1.
Variables Odds Ratio Lower Upper p-value
Placebo 2.30 1.11 5.03 0.029
Low compliance 0.60 0.29 1.21 0.153
Duration (week) 0.89 0.81 0.98 0.008

In EZR, select [Statistical analysis], [Discrete variables], [Logistic regres-
sion]. Set y as [Objective variable], ap[factor] + hilo[factor] + week
as [Explanatory variables] and check the appropriate check boxes, then click
[OK].

3 Furthur Readings

e Armitage P, Berry G, Matthews JNS (2002) Statistical Methods in Medical Re-
search, 4th ed., Blackwell Publishing.

o Bull K, Spiegelhalter DJ (1997) Tutorial in biostatistics: Survival analysis in
observational studies. Statistics in Medicine, 16: 1041-1074.

e Faraway JJ (2006) Extending the linear models with R: Generalized linear, mixed
effects and nonparametric regression models. Chapman and Hall.

e http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/Getting-Started-with-the-Rcmdr.pdf
(The introductory textbook for R Commander, provided by Prof. John Fox (Mc-
Master Univ.), the developper of Remdr package.)
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