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Fully explaining survival analysis is difficult within this introductory class, but many functions to conduct survival

analysis are provided by survival package.

1 Concept of survival analysis

In longitudinal observation of the effects by toxic substances, not only the changes of quantitative indices but also the

time to event such as death could be used to evaluate the strength of the toxicity of that substances. The data like time to

event can be analyzed by survival analysis (a.k.a. event history analysis).

Amongst one of the most famous methods is the Kaplan-Meier’s product-limit estimate, which is the products of (1

− number of events divided by population at risk) at all times of occurences of events. The time when this value goes

across 0.5 is median survival time. For the data of time to events for 2 groups, the logrank test or generalized Wilcoxon

test can be used to test the difference between the 2 groups. Besides those nonparametric methods, there are parametric

approaches to fit the time to events with any known distribution, like exponential distribution or Welbull distribution. The

famous semi-parametric approach of survival analysis is the Cox’s regression (a.k.a. fitting a proportional hazard model),

which assume that the ith individual’s hazard can be expressed as the product of the baseline hazard and exp (
∑
βzi),

where zi is the ith value of covariate vector z and β is coefficient’s vector.

After typing require(survival) or library(survival), Surv() generates the survival time object, survfit()

will calculate the Kaplan-Meier’s product-limit estimate (this result can also be used to draw survival curves),

survdiff() will conduct the logrank test, and coxph() fit the proportional hazard model to the data. If you want to

know the survival analysis in detail, you should read another text like Bull et al., 1997.

2 Kaplan-Meier method

Let the times of event happening since beginning of time at risk t1, t2, ..., the numbers of events at each time d1, d2, ...,

and the size of population at risk just before the each time n1, n2, .... The size of population at risk decreases not only by

the event occurrence but also by censoring such as moving out or loss to follow up or death by competing risks. When

the censoring and event occurred at the same time, usually the censoring occurred just after the event happening.

Here the Kaplan-Meier’s product-limit estimates Ŝ (t) can be defined as follows.

Ŝ (t) = (1 − d1/n1)(1 − d2/n2)... =
∏
i<t

(1 − di/ni)

Clearly this value means the probability of survival and is numerically 1 at first (nobody has experienced the event) and

0 in the end (after the everybody experienced the event).

The standard error of Ŝ (t) is given by the Greenwood’s formula shown below.

var(Ŝ ) = Ŝ 2 ×
∑
i<t

di

ni(ni − di)
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Estimated Ŝ (t) is usually plotted as survival curve with 95% confidence intervals*1.

In Rgui console, basic grammer for Kaplan-Meier method is shown below (with comments). After loading sur-

vival package in memory by typing library(survival) or require(survival), dat <- Surv(times, flags)

generates the survival time data dat, where the flags for censoring become 1 when the observation ends by event’s

occurrence and become 0 when the observation ends by censoring. Conducting Kaplan-Meier method is simply

res <- survfit(dat~1), or res <- survfit(dat~group) if you want to estimate this by group. By typing

plot(res), we can get the graph of survival curves. Detailed result of estimation can be obtained by summary(res).

practice� �
The leukemia data.frame in the survival package is the result of randomized controlled trial for the maintenance chemother-
apy’s effect to delay the remission of acute myelogenous leukemia. Included variables are the following 3.
time time to remission or censoring in weeks.
status flag for censoring, where 0 means censoring, 1 means remission.
x whether maintenance chemotherapy was conducted or not (Maintained or Nonmaintained).
Let’s conduct Kaplan-Meier’s method to estimate survival curves for the 2 groups (under maintenance chemotherapy or not).
How long the median survival times (here, median times to remission) of the 2 groups are?� �
In Rgui console, type as follows.

require(survival)

print(res <- survfit(Surv(time, status)~x, data=leukemia))

plot(res, xlab="(Weeks)", lty=1:2, main="Periods until remission of acute myelogenous leukemia")

legend("right", lty=1:2, legend=levels(leukemia$x))

The second line conducts Kaplan-Meier estimation and shows result below.� �
records n.max n.start events median 0.95LCL 0.95UCL

x=Maintained 11 11 11 7 31 18 NA

x=Nonmaintained 12 12 12 11 23 8 NA� �
The number of maintained patients is 11 and non-maintained patients is 12. Among them, remission cases were 7 and

11, respectively. Median periods until remission were 31 weeks for maintained patients and 23 weeks for non-maintained

patients. Lower limits of 95% confidence intervals of the median periods until remission were 18 weeks and 8 weeks,

respectively. Upper limits of those were both infinity. The third line draws survival curves as solid line and dashed line

for maintained group and non-maintained group, respectively. The fourth line adds a legend to the graph.� �
In EZR, read the leukemia data set in survival package (Caution on 20th July 2022: aml and leukemia
are included in survival, but those are not identified as data.frame, so that you have to need to execute
aml2 <- as.data.frame(aml) after loading survival package). Select [File], [Read data set from an at-
tached packages], then double-click survival in the top-left box, subsequently double-click leukemia in the
top-right box. After that, click [OK].
Kaplan-Meier estimate will be done by select [Statistical analysis], [Survival analysis], [Kaplan-Meier survival
curve and logrank test], then select [time] as “Time-to-event variable”, select [status] as “Status indicator”.
As the “Grouping variable”, [x] should be selected if you would like to do Kaplan-Meier estimate separately
for maintained group and non-maintained group, otherwise leave there unselected.
This menu can draw the survival curve with confidence intervals by checking the box on. After setting all
options, click [OK].� �

*1 However, if Ŝ (t)s were estimated for 2 groups and drawing both to compare them, confidence intervals are not usually drawn.
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3 Logrank test

Here I will give a brief explanation about the concept of logrank test. Let’s imagine 8 rats and randomly assign 2 groups

(administering toxic substance A and B) to them, then follow them up. On the day 4, 6, 8, 9, the rats in the first group

(which took toxic substance A) died. On the day 5, 7, 12, 14, the rats in the second group (which took toxic substance B)

died. There is no censoring.

The concept of logrank test is, making 2 by 2 contingency tables of group and alive/dead at each time of event, and

calculate the common chi-square value in a Cochran-Mantel-Haentzel’s manner.

In the example shown above, let’s denote expected number of death for jth group at the ith time of events as ei j,

observed total number of death at time i as di, population at risk of jth group at time i as ni j, total population at risk at

time i as ni, then
ei j = di · · · ni j/ni

In the above example, e11 = 1 · · · 4/8 = 0.5. Next, denote the number of death of jth group at time i as di j, the weight

of time i as wi, the score of jth group at time i as ui j, then

ui j = wi · · · (di j − ei j)

In the logrank test, every weights are 1. Then
ui j = di j − ei j

The summary score for group j, u j can be calculated as follows.

u j =
∑

i

di j − ei j

The variance V of the score can be considered as follows.

V = V j j =
∑

i

(ni − ni j)ni j · · · di(ni − di)
ni

2(ni − 1)

The chi-square value χ0
2, which obeys chi-square distribution of degree of freesom 1, is given by the formula below.

χ0
2 = u1

2/V

In the above example, u1 = (1−4/8)+(0−3/7)+(1−3/6)+(0−2/5)+(1−2/4)+(1−1/3)+(0−0/2)+(0−0/1) = 1.338...

and V = 1.568..., then χ0
2 = 1.3382/1.568 = 1.14. Because 1.14 is much smaller than 3.84, which is 95% point of chi-

square distribution with degree of freedom 1, we cannot judge that there is significant difference between the two groups.

In Rgui console, the script conducting this is very simple as follows.

require(survival)

time <- c(4,6,8,9,5,7,12,14)

event <- rep(1,8)

group <- c(1,1,1,1,2,2,2,2)

survdiff(Surv(time,event) ~ group)

In the case of leukemia dataset in survival package, the script will be as follows.

require(survival)

survdiff(Surv(time, status) ~ x, data=leukemia)
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The resulting p value is 0.0653, which means not significant difference between the maintained group and non-

maintained group at the significance level of 5%.� �
In EZR, logrank test of the null-hypothesis that remission time are not different between maintained and
nonmaintained groups is simultaneously conducted with the Kaplan-Meier estimate as already explained.
Note: you can calculate the generalized Wilcoxon test in a manner of Peto-Peto instead of logrank test, by
setting the radio-button to do so.� �

4 Cox regression

The Kaplan-Meier estimate and logrank test assume no specific distribution in the population, thus nonparametric

method. Cox regression assumes that the individuals’ hazards are “proportional” to the common baseline hazard. In that

sense, it’s semi-parametric method.

The basic idea of the Cox regression is: Denote the covariates’ vectors affecting the occurrence of events as zi =

(zi1, zi2, ..., zip) for ith individual. Denote the instantaneous rate of the event occurrence for this individual at time t as

h(zi, t). This is called as “hazard function”. Cox regression assumes the following formula.

h(zi, t) = h0(t) · exp(β1zi1 + β2zi2 + ... + βpzip)

where h0(t) is the common baseline hazard, which is the instantaneous rate of event occurrence at time t of “base indi-

vidual”, who has no effect on event occurrence by all covariates. Unknown parameters β1, β2, ..., βp should be estimated.

The effect of covariates on event occurrence is the proportional coefficients as exp(βxzix). This is called as “proportional

hazard”.

The original model by Cox considered the time-dependent covariates where zi changes by time. However, usually we

assume the effect of covariates on the event occurrence is independent from time (thus not changing by time). Therefore,

the ratio of hazards between different individuals is constant regardless with time: The ratio of the 1st individual’s hazard

at time t to the 2nd individual’s hazard at time t is not including h0(t) (cancelled from numerator and denominator), then

the hazard ratio is given by the following formula. It means that the hazard ratio doesn’t depend on the shape of h0(t).

exp(β1z11 + β2z12 + ... + βpz1p)
exp(β1z21 + β2z22 + ... + βpz2p)

The relationship of survival function and hazard function can be summarized as follows. Denote the non-negative

random variable showing the time to event occurrence as T , then the survival function S (t) is the probability of T ≥ t. By

this definition, S (0) = 1. The hazard function h(t) is the instantaneous probability of event occurrence at time t. Then we

can get the following equations.

h(t) = lim
∆t→0

Pr(t ≤ T < t + ∆t|T ≥ t)
∆t

= lim
∆t→0

S (t) − S (t + ∆t)
∆tS (t)

= −dS (t)
dt

1
S (t)

= −d(log(S (t))
dt

The cumulative hazard function H(t) is,

H(t) =
∫ t

0
h(u)du = − log S (t)

Thus we obtain
S (t) = exp(−H(t))
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Denote the cumulative hazard function at time t of an individual with covariates vector z as H(z, t), the survival function

of the same individual as S (z, t). If the proportional hazard stands,

H(z, t) =
∫ t

0
h(z, u)du =

∫ t

0
h0(u) exp(βz)du = exp(βz)H0(t)

Then we obtain the following equation.

S (z, t) = exp(−H(z, t)) = exp{− exp(βz)H0(t)}

Take the logarithm and inverse the sign and take the logarithm again, the we obtain the following equation.

log(− log S (z, t)) = βz + log H0(t)

From this equation, we can see that the pararell curves with the gap of βz will be drawn, being survival time as horizontal

axis and log(− log S (z, t)) as vertical axis. If this pararell nature is not met, the "proportional hazard" assumption cannot

stand and thus Cox regression is not suitable.

In estimation of β, the concept of partial likelihood is applied. If we decompose the probability of event occurring

for ith individual at time t into the probability of single event occurrence at time t and the conditional probability that

the event occurred for the specific individual i under the condition that the event occurred at time t, the former is still

unknown unless we can assume any specific parametric model, but the latter L(i, t) can be always estimated as the ratio

of ith individual’s hazard being numerator and the sum of all individuals’ hazard within the whole population at risk at

time t.

For the all event occurrences, denote the products of all L(i, t)s as L, the meaning of L is the total likelihood minus

the likelihood concerning time, thus is called as partial likelihood. To estimate a “good” parameter β that asymptotically

converges to the true parameter as the sample size becomes larger, and whose distribution obeys a normal distribution,

and whose variance becomes smallest, Cox conjectured that such β could be obtained when the L became maximum and

this conjecture was given prove by the Martingale theory. By this fact, the proportional hazard model is also known as

Cox regression*2. The basic form of Cox regression in R is coxph(Surv(time,cens)~grp+covar,data=dat).

Practice� �
In the leukemia dataset, conduct Cox regression on the effect of treatment (maintained / nonmaintained) on the survival time.� �� �
require(survival)

summary(res <- coxph(Surv(time,status)~x, data=leukemia))

KM <- survfit(Surv(time,status)~x, data=leukemia)

par(family="sans",las=1,mfrow=c(1,3))

plot(KM, lty=1:2, main="Kaplan-Meier plot of survival time of leukemia dataset.")

legend("topright", lty=1:2, legend=levels(leukemia$x))

plot(survfit(res),

main="The survival curve of the reference individual\n with the treatments being covariates")

plot(KM, fun=function(y) {log(-log(y))}, lty=1:2, main="Double logarithmic plot of leukemia dataset")� �
The result given in the second line is shown below.

*2 If multiple events occur simultaneously, there are several methods to treat them: Exact method, Efron’s method, Breslow’s method, discrete
method, and so on. However, whenever possible, Exact method is recommended. The discrete method should be used when the survival times
are given as discrete measures. Many statistical software uses Breslow’s method, but the default method in R’s coxph() function is Efron’s
method. Generally speaking, Efron’s method gives closer results than Breslow’s method.
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� �
Call:

coxph(formula = Surv(time, status) ~ x, data = leukemia)

n= 23

coef exp(coef) se(coef) z p

xNonmaintained 0.916 2.5 0.512 1.79 0.074

exp(coef) exp(-coef) lower .95 upper .95

xNonmaintained 2.5 0.4 0.916 6.81

Rsquare= 0.137 (max possible= 0.976 )

Likelihood ratio test= 3.38 on 1 df, p=0.0658

Wald test = 3.2 on 1 df, p=0.0737

Score (logrank) test = 3.42 on 1 df, p=0.0645� �
The p value of the test of null-hypothesis that the maintained and nonmaintained group have the same hazard is 0.074,

so that the null-hypothesis is not rejected at the 5% significance level*3. The exp(coef) 2.5 is the estimated hazard ratio

of 2 groups, so that we can judge the nonmaintained group has 2.5 times higher hazard of maintained group’s hazard but

the 95% confidence intervals includes 1.

By the third line and later scripts, 3 graphs are drawn. From left to right, the Kaplan-Meier plot estimated for 2 groups

separately, the baseline survival curve with 95% confidence intervals as the result of Cox regression with treatment being

covariates, and the double logarithmic plot are drawn, respectively.

If you dare to draw the baseline survival curves of Cox regression with covariates for the 2 treatment groups separately,

for example, subset=(x=="Maintained") option can be used in the coxph() function, when the group variable cannot

be included as covariates. More than 2 survival curves could be drawn without erasing previous graphs by specifying

par(new=TRUE) option. However, I don’t recommend this manner.

There are three strategies to control the effect of covariates on the survival time. For example, to analyze the survival

time of cancer patients, the effects of stage should be controlled. The possible strategies to control them are:

1. Analyzing the survival time separately by each stage.

2. Assuming that the effects of other covariates are common to all stages, then set the stage as strata.

3. Including the stage as covariates in the same model.

The third strategy has an advantage that the effect of stage can be quantitatively estimated, but it requires the unrealistic

condition that the baseline hazards are the same for all stages. In addition, the method of coding stages as covariates may

affect the result (usually coding as dummy variable).

The second strategy means that the baseline hazards are different by stage. In the coxph() function, the option

strata() can be used for different baseline hazards. For example, if the data.frame of survival time of cancer patients

is leukemia, which includes 4 variables: the variable of survival time time, the variable of censoring flag status, the

group variable showing the treatment x, the variable of stage of cancer progress stage, then the model can be written as

coxph(Surv(time,status)~x+strata(stage), data=leukemia)*4

Anyway, Cox regression is a kind of model-fitting, so that we can select better models by the residual analysis, likeli-

hood ratio test, and the squared multiple correlation coefficients, but AICs are usually not available because calculating

AIC requires the specified distribution in the baseline hazard.

*3 Score (logrank) test in the bottom line is the result of Rao’s score test, different from the logrank test with survdiff().
*4 However, in fact, leukemia data.frame does not include stage.
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� �
In EZR, select [Statistical analysis], [Survival analysis], [Cox proportional hazard regression], then select
time in the box of “Time”, select status in the box of “Event”, and select x in the box of “Explanatory
variables” (if you set here variables as the form of “+strata(Variable Names)”, different baseline hazards by
strata are assumed). After all, click [OK], then you get the result.� �
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