
Environmental Health (3): Toxicology

- Key concepts
 - · Interdisciplinary field: studies adverse effects of chemicals on biological systems
 - · All substances are potentially toxic (likelihood of human exposure is important)
 - · Route of exposure is important
 - · Structure of a chemical implies the relative level of toxicity and selectivity
 - · Metabolic pathway modifies chemical form of substance, subsequently its toxicity
- Basic toxicology testing is critical to risk assessment 10/14/2018

What is toxicology?

- Paracelsus (1493-1541, Physician, Alchemist) is called as "The father of toxicology"
 - "Alle Ding sind Gift und nichts ohn Gift; alein die Dosis macht daß ein Ding kein Gift ist" ("All things are poison and nothing is without poison; only the

dose makes a thing not a poison")

- · Definition: The scientific research to clarify the safety to human health of drugs and chemical substances.
- Core problem in medicine: any drug has both therapeutic and adverse effect on human body, which widely varies. Suppose:
- Flu drug, to cause liver failure for 10% of users, is not acceptable.

Biological protection system

non-specific: phagocytosis (neutrophil, monocyte,

macrophage), attack to cancer/virus infected cells (NK

specific: acquired immunity (B, Helper/Killer T cells)

enzymatic catabolization: fat-soluble -> water-soluble

metallothionein: induced by Cu, Zn, Cd (MW 6-7K)

superoxide elimination system: SOD, GPx, Catalase

 New cancer drug, which can cure 80%, is acceptable even if it causes mild adverse effect for everyone

10/14/2018

Infectious agent Bio-molecule (high MW) Chemical substance (low MW)

10/14/2018

Via immune system

• Via non-immune system

DNA repairing enzyme

Transferrir

Barrier by skin and

cell), natural immunity (IgM)

Cd-metallothionein

2

Absorption pathway

via gastrointestinal tract

- most materials absorbed from gastrointestinal organs go through portal vein to liver, then are metabolized
- · in mucosa of oral cavity, tongue surface, and mucosa of lower rectum, materials are directly absorbed
- stomach easily absorb fat-soluble/acidulous substances

via **lung**

0.003 mg/kg

10/14/2018

(saxitoxin, the best known

(Note) White: hydrogen, Blue: nitrogen,

Orange: phosphorus, Green: chlorine

Red: oxygen, Grey: carbon, Yellow: sulfur,

paralytic shellfish toxin)

- · alveoli absorbs air pollutants
- · some materials (eg. mercury) are more effectively absorbed as vapor from lung than as liquid from gastrointestinal tract
- via skin
 - usually low absorption efficiency due to simple diffusion
 - exceptions: sarin, tetrachlorocarbon, paraguat (herbicide)

10/14/2018

5

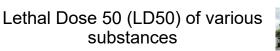
Intra-body kinetics

- Whether a chemical substance has toxic effect or not depends on (1) sensitivity of host organ, and (2) concentration of the substance there
 - The concentration depends on intra-body kinetics composed of 4 factors (Absorption, Distribution, Metabolism, Excretion)
- · Critical concentration: lowest concentration to harm tissue
- Target organ: the first organ where the substance accumulates up to critical concentration
- The highest concentration is not necessarily seen in target organ, because the sensitivity varies by organ

Target organs of toxicity

non-specific

immunity


- Cadmium (Cd)
 - Chronic exposure -> Itai-itai disease (affecting bone)
 - Most cadmium accumulates liver, subsequently kidney: thus target organs are them
- Lead (Pb): hematopoietic system (bone marrow) -> decrease of hemoglobin and increase of reticulocytes
- Paraguat: lung

10/14/2018

 Inorganic arsenic (As): No mutagenecity but carcinogenecity, probably inhibiting macrophage/NK cells

Distribution

- · Distribution in the body differs by substances
 - · DDT. thiopental accumulates to fat tissue
 - Inorganic mercury is more distributed to kidney, secondly liver and spleen, but methylmercury are equally distributed to any organs (incl. brain, fetus)
 - Cadmium accumulates liver and kidney (not in bone)
- · Why differs by substances?
 - · Host factors: various blood flow to each organ, tissue barrier (BBB, BPB)
 - Material factors: MW, fat-solubility, binding capacity with blood elements and tissue cells
 - fat-soluble substances have longer biological half-life

· Definition: the dose which kills a half of administered animals

(mouse/rat) within a study period, in mg/kg body weight.

The most popular indicator of acute toxicity of substances.

gas, chemical weapon)

10 ma/ka I mg/kg (VX nerve (Sodium cyanide) 500 mg/kg (acetoaminophene) 2,400 mg/kg 118 mg/kg (Sodium

(Chlorpyrifos, insecticide)

chloride) 3

Metabolism

- Catabolization basically increases the excretion by increasing the polarity
- Basically reducing toxicity, but rarely the metabolic products have higher toxicity (metabolic activation)
- Stages of metabolic reaction
- 1st phase: Increasing polarity by oxidation, reduction, or hydrolysis. In liver, most active. a kind of heme-proteins, <u>cytochrome P450</u> in hepatic microsome is most important in oxdation
- 2nd phase: Cohesion with endogeneous substances like glucuronic acid, increasing ability of excretion
- 3rd phase in excretion

10/14/2018

Classification of toxicity

10

- General toxicity (in terms of period to expression)
- Acute: single exposure cause a toxic response within a short latent priod. Evaluated with LD50, LC50
- Subacute: 1-3 months repeated exposures cause it.
- · Chronic: several months to a year exposure cause it.
- Intergenerational: expression in the next generation
- Special toxicity (in terms of toxic responses)
 - · Carcinogenecity: initiation / promotion
 - Mutagenecity: causing the mutation of genes
- Misc.
- Reproductive toxicity, Neurotoxicity, Immune-toxicity, etc.
 10/14/2018

Reference doses (RfD)

- ADI (acceptable daily intake): For the substances to be intentionally used by human-beings, the daily intake level may have no risk even the human continue to have that level
- TDI (tolerable daily intake): For the substances which are not intentionally used but taken as environmental pollutants, the daily intake level cause no risk even the one continue to have that level
- Units are mg/kg body weight/day
 - NOAEL/NOEL/LOAEL for the most susceptible animal experiment are devided by safety factor (for ADI) or uncertainty factor (for TDI). Usually the factors are 10.

Enzymes Molecules Substrate (external Frequencies of Effects of deletion deletion type toxin) Cytochrome P450 CYP2C19 Mephenytoin, 3% of Caucasian More adverse etc. 20% of Japanese effect Alcohol 4-20% of Cauc. More aldehyde ADH1 Ethanol dehydrogenas production 90% of Japan. Aldehvde ALDH2 Rare in Cauc. "Flusher" Acetoaldehyde dehydrogenas 40% of Japan. N-acetyl NAT2 Isoniazid (anti-60% of Cauc. More adverse transferase tuberculosis) 12% of Japan. effect Glutathione-S GSTM1, GSTT1, Epoxide GSTM1=50%, Cancer induction transferase GSTP1 GSTT1=38% by smoking UDP-glucuronide UGT1A1 Bilirubin Crigier-Najjar transferase syndrome TPMT Thiopurine-methyl Anti-leukemia Deletion-homo Suppression of transferase 0.2-0.3% Cauc immunosuppi bone marrow 10/14/2018 11

Genetic polymorphisms of

metabolic enzymes

Evaluation of toxicity

- Target
- human
- · experimental animal
- Types of testing (cf. OECD guideline)
 - Acute oral test: observe 2w after admin, sectio, LD50
 - · Subacute: everyday admin 2-4w, sectio, NOEL
 - Chronic: Rodent+Non-rodent, at least 1yr repeatedly, NOEL, ADI, TDI
 - Misc: Carcinogenic test, Mutagenic test, Biomonitoring, etc.

10/14/2018

0.6 - M

10/14/2018

0.4

16

normal distribution.

The dose to kill 50% is LD50

Dose-Response Relationships

The responses of host animals may change with the dose.

changes with dose (toxic load). The relationship is usually

Probit: $F^*(X_i) = \Phi(\beta_0 + \beta_1 X_i), \Phi(z) = \int_{-\infty}^z \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$

• In population level, the proportion of responded animals

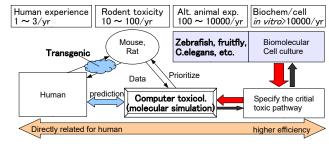
S-shape. Approximated with cumulative logarithmic

ED50 or LD50 is estimated by probit/logit analysis.

Logit: $F^*(X_i) = \Lambda(\beta_0 + \beta_1 X_i), \Lambda(z) = \frac{e}{1 + e^{i}}$

The dose to make 50% respond is ED50

Calculation example: See, http://minato.sip21c.org/envhlth/dr2.R


17

14

Future Perspectives of Toxicity Testing

15

Source: Collins FS, Gray GM, Bucher JR: Transforming environmental health protection. *Science*, 319: 906-7, 2008.

- Mainly from Kidney and Liver
- Excretion to urine: 25% of blood -> glomerulus -> 20% filtration (<MW 60000)
- Excretion to bile: from liver. Higher polarity materials are directly excreted into feces, lower polarity materials are cohesively coupled with glutathione or glucronic acid (after reabsorption from intestine; enterohepatic circulation), then conveyed to bile with transporters like MRP2 (Phase III)
- Other pathways of excretion: Intestine (PCB, DDT, etc.), Breastmilk (fat-soluble substances), breath, skin, saliva, tears

Indicators of toxicity

LC50: lethal concentration 50 = concentration to kill a half

Within the tested doses, maxium dose with no observable effect is

the possible effect in the larger population or genetic variation

 Virtually Safe Dose (VSD): setting the acceptable risk level. The amount to cause less risk than that is to be acceptable.

· The level should be adjusted by safety factor or uncertainty factor for

· LD50: lethal dose 50 = amount to kill a half

· Less than threshold, no toxic effect

NOEL (or NOAEL for adverse effect)

ED50: effective dose 50 = amount to affect a half

10/14/2018

Acute toxicity

· With threshold

Without threshold

10/14/2018

10/14/2018

12