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Application of simple mathematical model (1)
● Figure 12-1 is an example of 

simple linear regression.
● The 2 primary purposes of models 

in epidemiology → Different 
models should be applied 
(though many courses in statistics 
may not distinguish those).
– 1. To make prediction

● Estimating the risk (or 
other epidemiologic 
measures) based on 
information from risk 
predictors.

– 2. To control for confounding
● Aiming at learning about 

the causal role of few 
specific factors for 
disease, simultaneously 
controlling for possible 
confounding effects of 
other factors.

Cig/d 0 5 15 30 50

ASMR 0.6 3.0 5.4 10 15



Application of simple mathematical model (2)
● Figure 12-1 shows almost perfect linear regression.  Regression 

line means that estimated average values for the variable on the 
vertical scale (Y) according to values of the variable on the 
horizontal scale (X) in the form of:

● Y-hat is the estimated value of Y for any given values of X.  The 
a0 is the intercept and a1 is the coefficient of X, which means the 
slope (= the number of units of change in Y-hat for every unit 
change in X).  The intercept 1.15 (/100000) means the age-
standardized mortality rates in the absence of cigarette 
smoking.  According to the raw data, it was 0.6 (/100000) in the 
absence of smoking, slightly different from the estimated 1.15, 
which uses all five data points.

● The slope 0.282 means the increment of deaths per 100000 for 
every additional cigarette smoking daily.

● Assuming that confounding and other biases were properly 
addressed, the slope quantifies the effect of cigarette smoking 
on laryngeal cancer.  The line also gives estimate of mortality 
rate ratios.  Age-standardized mortality rate of 15.2 (/100000, 
which is 1.15 + 0.282 x 50) for 50 cigarettes daily is 15.2/1.15 = 
13.3 times larger than the rate in nonsmokers.



THE GENERAL LINEAR MODEL
● Models with more than 1 factor at a time can be used as an alternative to 

stratification to control confounding.
● As extension of linear model of Figure 12-1,

● Y is dependent variable.  X
1
 and X

2
 are independent variables.

● Suppose that Y is the age standardized mortality rate of laryngeal cancer in 
Figure 12-1, and that X

1
 is the number of cigarettes smoked per day, then X

2
 may 

be the amount of alcohol consumed per day (Alcohol drinking is also risk of 
laryngeal cancer): The multiple regression line can be drawn in 3D space.

● Since cigarette smoking and alcohol drinking are correlated and thus those are 
mutually confounding risk factors for laryngeal cancer.

● A stratified analysis can remove that confounding, but the confounding can also 
be removed by fitting [12-1].  The coefficients for X

1
 and X

2
 (= a

1
 and a

2
, 

respectively) are unconfounded.  Such multiple linear regression is still 
possible by using lm() in R.

● The general form of [12-1] is “general linear model”, as shown next.



TRANSFORMING THE GENERAL 
LINEAR MODEL

● Dependent variable in a regression model is not 
mathematically constrained.

● However, in actual study, the range of variable is 
constrained by many ways
– FEV1 (Forced expiratory volume in 1 sec, a 

measure of lung function) cannot take 
negative value.

– Disease occurrence (no/yes) is usually 
assigned a value of 0/1.  To avoid getting 
impossible values (eg., negative mortality 
rate) for the dependent variable, fit straight 
line to the logarithm of the mortality rate is 
possible, as [12-2], where ln(Y-hat) is natural 
logarithm of Y-hat.  By taking antilogarithm of 
[12-2], [12-3] is obtained.  This is exponential 
model, a kind of general linear model.

– In linear model, effect of exposure is simply 
obtained as the difference of Y-hats for X=0 
and X=1, it’s the slope of the regression line.

– In exponential model, the ratio of Y-hat (rate 
ratio of exposed to unexposed persons) is 
antilogarithm of the coefficient.



THE LOGISTIC TRANSFORMATION
● If risk data is obtained, the range is much 

narrower.  Rates are never negative but 
can go as high as infinity, but risks range 
[0, 1].

● Converting [0, 1] to (-∞, ∞) is possible by 
logistic transformation.

● Risk odds, R/(1-R), range [0, ∞).  Then 
take logarithm, it ranges (-∞, ∞).

● ln[R/(1-R)] is a “logit” of R.  This 2 step 
transformation is logistic 
transformation.

● The logistic model is that the logit of R is 
dependent variable of a straight line 
equation as [12-4].  If independent 
variable is more than one, it becomes 
“multiple logistic model”.  The ratio is 
equal to the logarithm of the risk-odds 
ratio as [12-5].  The result means that, in 
the logistic model, antilogarithm of the 
coefficient of a dichotomous exposure 
term estimates the odds ratio of risks.



CHOICES AMONG MODELS
● From a practical standpoint, the transformations dictate what type 

of measure the coefficients in the model will estimate.
– For risk data, the logistic model will provide odds ratio, not 

easily get the estimate of risk difference.
– The model is used to assess the risk for people, invalid 

(negative or more than 100%) estimates has to be avoided.
– The model is used to assess the overall effect of exposure 

and the ratio can be taken as effect measure, logistic model is 
appropriate.

● Consider the data in Table 12-1 (hypothetical risk data over 5 year 
period for 20 subjects with different ages ranging from 18 yrs to 77 
yrs).
– If linear model is applied (Figure 12-2), the value of the 

intercept -0.49 is impossible value for a risk (all ages less 
than 24 or greater than 74 yrs give impossible estimates of 
risk).

– If logistic model is applied (Figure 12-3), direct estimation of a 
risk difference is impossible, but an odds-ratio associated with 
a 1-year increase in age is exp(0.144)=1.16 (by R, it’s 
1.15500…)

● The logistic model is particularly appropriate for the analysis of 
case-control studies.  Odds ratio can be obtained from case-
control studies and used as an estimate of rate ratios if control is 
sampled adequately.



CONTROL OF CONFOUNDING WITH 
REGRESSION MODELS

● Multiple regression models can control several confounding variables 
simultaneously.

● As explained in Chapter 10, stratified analysis tends to require large sample 
size.  Five confounding variables, each of which had 3 categories, generates 
3x3x3x3x3=243 strata.  To keep enough sample size within each stratum, 
total size becomes very large.

● Multiple regression modeling solves this problem, though the results from the 
regression model are readily susceptible to bias if the model is not a good fit 
to the data.

● Figure 12-4 and 12-5 show hypothetical data, with data for exposed and 
unexposed people by age and by some unspecified continuous outcome 
measure.  Unfortunately, there is no overlap in the age distributions between 
exposed and unexposed.
– Stratified analysis would produce no estimate of effect (No information in 

the data)
– Multiple linear regression with both age and exposure terms, which fit 

two parallel straight lines through the data, can show the difference in the 
outcome between exposed and unexposed as the coefficient for the 
exposure term (Figure 12-4).  Regression model produces a statistically 
stable estimate from the nonoverlapping sets of data.

– However, the relation between age and outcome may be curvilinear 
(Figure 12-5).  If so, the effect measure from multiple linear regression is 
incorrect.  And, we cannot know whether the model in Figure 12-4 is 
appropriate or the model in Figure 12-5 is appropriate.

● If we have such nonoverlapping data, saying nothing is better than saying 
something incorrect.  The result of stratified analysis is more reliable.  By 
stratified analysis, the researcher and reader can see the distribution of the 
data by the key variable.  Thus, the multiple regression analysis should be 
used only as a supplement to a stratified analysis.

● Multivariate model looks sophisticated and thus it’s a lure, but often leads to 
mistake.



PREDICTING RISK FOR A PERSON
● Regression model is used to predict individual’s outcome.
● Murabito et al. (1997)

 [https://www.ncbi.nlm.nih.gov/pubmed/9236415] 
– Logistic model for 4-year risk estimates for 

intermittent claudication (the symptomatic 
expression of atherosclerosis in the lower 
extremities), shown in Table 12-2.

– Getting individual risk estimates from this model, 
coefficient for each variable in the table is multiplied 
by the values for a given person and summed up, 
which gives logit for a given person.  Then take 
exponential, risk-odds (R/(1-R)) is obtained.

– Odds = Risk/(1-Risk) ↔ Risk = Odd/(1+Odds)
– Then Risk is exp(logit)/[1+exp(logit)]
– The 4-year risk of intermittent claudication for a 70-

year-old nonsmoking man with normal blood 
pressure, diabetes, coronary heart disease and 
cholesterol level of 250 mg/dL is obtained as

– logit  = -8.915 + 1x0.503 + 70x0.037 + 0x0.000 + 
1x0.950 + 0x0.031 + 250x0.005 + 1x0.994 = -2.628

– Risk = exp(-2.628)/[1+exp(-2.628)] = 0.067
– If the man had stage 2 hypertension, logit is -1.830 

and Risk is 0.138.
● The purpose of including each individual term in the 

model in Table 12-2 is to improve the estimate of risk.
● Age nor presence of CHD is not a causal factor in this 

model, both are good predictors of the risk, it makes 
sense to include them in the prediction model.

Table 12-2. Logistic model to obtain estimates of 
4-year risk for intermittent claudication

Variable Coefficient

Intercept - 8.915

Male sex 0.503

Age 0.037

Blood pressure

 Normal 0.000

 High-normal 0.262

 Stage 1 hypertension 0.407

 Stage 2 hypertension 0.798

Diabetes 0.950

Cigarettes / day 0.031

Cholesterol (mg/dL) 0.005

Coronary heart disease 0.994

https://www.ncbi.nlm.nih.gov/pubmed/9236415


STRATEGY FOR CONSTRUCTING REGRESSION 
MODELS FOR EPIDEMIOLOGIC ANALYSIS

● Centering of variables in regression models (box, 
p.223)
– The intercept in a regression model is the 

predicted outcome when all independent 
variables are 0.

– If 0 is not meaningful predictor, centering 
(convert the predicting variable around some 
central value) should be done.

● (eg.) Regression to predict mortality 
rates from BMI, BMI=0 makes no sense. 
 Let the independent variable as (BMI – 
22) instead of BMI itself, intercept is 
much more interpretable.

● Determine which confounders to include in the 
model
– First, all potential confounders are included
– Then, build a model by introducing predictor 

variables one at a time.  After each term is 
introduced, examine the amount of change in 
the coefficient of the exposure term.

– If the exposure coefficient changes 
considerably (usually 10%), then the added 
variable is a confounder.

– It’s essential for the exposure to be included in 
the model as a single term (included as several 
terms or product terms should be avoided).

● Do a stratified analysis first
– The first step of the analysis  should be a 

stratified analysis.
– Multivariable regression analysis 

contributes to causal research by enabling 
the simultaneous control of several 
confounding factors.

– Usually the confounding stems from one or 
two variables and a multivariable 
regression model will give essentially the 
same result as a properly conducted 
stratified analysis

● Stepwise models in epidemiologic analysis (box, p.234)
– Automatic selection based on statistical significance 

of each coefficient
– It may be valuable as prediction model
– For causal inference, using statistical significance for 

model selection must be avoided.
● Amount of confounding depends on the relation 

between the potential confounder and the 
exposure and the relation between the potential 
confounder and the outcome.  Evaluation of 
coefficients only targets the latter.

● It may also omit confounding variables for which 
the relation with outcome is not statistically 
significant.



STRATEGY (cont’d) – Estimate the shape 
of the exposure-disease relation

● If the exposure variable is dichotomous, the effect of 
exposure is simply estimated as the coefficient, but if the 
exposure is continuous, redefinition of exposure is needed.

– If the model involves a logarithmic transformation, a 
single term for a continuous exposure variable 
mathematically takes the shape dictated by the model.

– In a logistic model, the exposure coefficient is the log of 
odds ratio for a unit change of exposure.  The effect of 
the unit increase multiplies the odds ratio by a constant 
amount.  The result is an exponential dose-response 
(Figure 12-6).

– Regardless of the actual shape of the relation between 
exposure and disease, the exponential shape fits the 
data if the exposure variable is continuous and included 
as single term in a model using a logarithmic 
transformation.

– In linear models, a linear relation is guaranteed.
● The shape of dose-response relation can be determined by 

data in several ways.

● Spline regression
– Using curve-smoothing like spline, 

a different fitted curve to apply in 
different ranges of the exposure.

● Avoiding to let the model determine the 
shape of relationship between exposure 
and disease is important.

● Factoring the exposure
– Categorizing exposure into ranges and then 

creating a separate term for each subrange of 
exposure, except for reference category.

– (eg.) Cigarette smoking can be categorized as 
zero/d, 1-9/d, 10-19/d, … According to the 
extent of smoking, each smoker can be 
categorized one of those categories (each 
category except 0 is treated as a dummy 
variable).  Resulting set of coefficients in the 
fitted model indicate a separately estimated 
effect for each level.

● Evaluate interaction
– To evaluate interaction, redefinition of the 

two exposures by considering them jointly 
as a single composite exposure is 
needed.

– For two dichotomous exposure variables A 
and B, each person falls into one of the 
four categories, exposed to neither (as 
reference), exposed to A but not B, 
exposed to B but not A, exposed to both.

– By doing so, partitioning the risk or risk 
ratio among those with joint exposure to 
two agents into the four categories as 
explained in Chapter 11. 



OVERFITTING OF REGRESSION MODELS 
AND SUMMARY CONFOUNDER SCORES

● Advantage of 
regression model is the 
ability to control 
simultaneously for 
several confounders

● One way to avoid overfitting 
is to use the summary 
confounder score.
– Disease risk score
– Exposure summary score 

(= propensity score)

● Rule of thumb: At least 10-
15 observations for every 
term are needed.

● If less than that, overfitting 
may occur.  The model is 
too heavily influenced by 
random error in the data.

● Trimming of the subjects 
outside the range of 
propensity scores that is 
common to both exposed 
and unexposed subjects 
(Figure 12-7)



Example of the use of propensity scores: Are drug-
eluting stents better than bare-metal stents?

● Mauri et al. (2008) New England Journal of Medicine, 359: 1330-42.
(https://www.nejm.org/doi/full/10.1056/NEJMoa0801485)

● Commented by many researchers including Rothman
(https://www.nejm.org/doi/full/10.1056/NEJMc082174)

● Using the summary confounder score is popular in pharmacoepidemiology.  Mauri et al. (2008) studied the 
comparative safety of two different kinds of stents (tubular wire cages used to keep arteries patent after 
narrowed vessels have been widened by angioplasty).
– Acute myocardial infarction adult patients at one hospital during 18 months got stenting surgery, followed 

up2 years after stenting
– Comparison between bare-metal stents and drug-eluting stents (to prevent scar tissue formation within 

the artery walls), but some characteristics differed between the patients receiving the two groups.
– Each patient with drug-eluting stent was matched with a patient with bare-metal stent by propensity score. 

 Though there should be no difference in risk of death within 2 days after stenting between 2 stents,  2-
day risk for receiving bare-metal stent (1.2%) was almost double of that for drug-eluting stent (0.7%).

– Unfortunately, the authors incorrectly focused on the lack of statistical significance of the difference in 2-
day risk of death.  The P value was 0.06 (statistically “not significant”), but using statistical significance to 
assess the difference is a poor approach.

– The size of imbalance in risk factors and how much it biased the final results were larger problem.
– After control of confounding, the authors found that the 2-year risk of death was 10.7% among patients 

with drug-eluting stent and 12.8% (20% greater than 10.7%) among those with bare-metal stent.  But it 
ignored residual confounding (the 2-day risk of death was almost double in bare-metal stent).  If the 
confounding affected higher risk of death within 2-days after stenting persisted for the following 2 years, 
20% difference may be caused by such unmeasured confounding.  Thus the conclusion by Mauri et al. 
was wrong.  Using proportionality of the risks as an adjustment factor, 73% higher risk of bare-metal 
stent observed within 2 days after stenting, but 20% higher risk of bare-metal stents for 2 years.  If 73% 
higher risk is caused by unmeasured confounding, bare-metal stenting is considerably safer.  After using 
the ratio of risks over the first 2 days to adjust the risk ratio at 2 years, 2-year risk ratio can be converted 
to a risk difference (with simple assumptions), the conclusion is that bare-metal stent patients had an 
absolute risk of death actually 4.4% lower over 2 years than drug-eluting stent patients.

https://www.nejm.org/doi/full/10.1056/NEJMoa0801485
https://www.nejm.org/doi/full/10.1056/NEJMc082174


Variable matching ratios, confounding, 
and trimming (box, p.229-30)

● In cohort study of treated and untreated patients, there may be substantial confounding by 
indication.

● Matching the two cohorts by their propensity scores is one solution.
● Variables in the propensity score model should be adequately controlled in the comparison 

between the treated cohort and the individually matched untreated cohort.  It also 
automatically achieves trimming (Figure 12-7).

● Unmatched subjects are omitted from analysis, loss of information.  In stratified analysis or 
regression model, they can be used.

● By matching all unexposed persons who have approximately the same propensity score 
with each exposed person, loss of information can be reduced.  But by doing so, showing a 
simple table of balancing treated and untreated subjects for each variable becomes 
impossible.

● Instead, the two-step process is possible.
– First, select matched pairs (using a fixed matching ratio) to produce a table showing 

balance for individual variables in the propensity score model
– Second,  add back into the data those subjects who could have been matched but 

were excluded to keep the matching ratio to a value of 1 to avoid loss of information.
● The process mentioned above is possible for cohort study, but causes bias in case-control 

study.



SUMMARY OF CHAPTER 12

● Regression model is useful for predicting risk and 
for controlling many confounding variables 
simultaneously.

● But stratified analysis should be applied at first.
● The regression results should be presented in the 

published work or final report only to the extent 
that they represent an important refinement of the 
findings.
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