公衆衛生学実習テキスト

中澤 港

2018年11月6日(火)

このテキストは公衆衛生学実習のため作成したものである。実験デザインや統計解析について の詳細は、大学院エビデンスベーストヘルスケア特講のテキスト(http://minato.sip21c.org/ ebhc-text.pdf)を参照されたい。また、本実習についての情報や統計解析の練習用のサンプル ファイルは、http://minato.sip21c.org/pubhealthpractice/に適宜掲載するので参照され たい(本テキストの pdf ファイル自体, 班分け部分を消してその web サイトに掲載する)。

目次

1	本実習の位置づけ	3
2	実習の進め方	3
2.1	実習室について....................................	3
2.2	担当教員	4
2.3	これまでのグループ実習テーマの例	4
2.4	日程	5
2.5	提出物と成績評価の方法....................................	5
2.6	基礎実験の個人レポート作成上の注意..............................	6
3	討論について	6
3.1	水	6
3.2	大気・環境問題....................................	7
3.3	産業保健	7
4	水の基本実験	8
4.1	概要	8
4.2	硬度とは	8
4.3	キレート滴定法による総硬度の測定................................	8
4.4	その他の測定	10

5	大気・環境問題	10
5.1	(A)二酸化炭素測定グループ(2~3人)	11
5.2	(B)粉塵・騒音グループ(2~3人)	11
5.3	(C)ザルツマン法により大気中二酸化窒素を測定するグループ(残りの人)	14
6	産業保健	15
7	統計解析の方法	17
7.1	実験計画法	18
7.2	単一群,事前-事後デザイン	19
7.3	平行群間比較試験(完全無作為化法)	19
7.4	クロスオーバー法 (cross-over design)	22
7.5	データ入力	26
7.6	データの図示	28
7.7	連続変数の場合	29
7.8	記述統計・分布の正規性・外れ値	31
7.9	独立2標本の差の検定	35
7.10	3 群以上の比較	38
7.11	二元配置分散分析	45
7.12	2 つの量的な変数間の関係	46
7.13	文献	56

57

索引

問い合わせ先:神戸大学大学院保健学研究科パブリックヘルス領域・教授 中澤 港 e-mail: minato-nakazawa@umin.net

1 本実習の位置づけ

本実習は、カリキュラム上、前期の講義「環境・食品・産業衛生学」に対応する実習であるが、こ れまで伝統的に学生がグループ実習として自主的に実習課題を決めて実施し、最終発表を相互評価 するという形で進められてきたので、本年度も基本的にはそのスタイルを踏襲する。また、水、大 気・環境問題、産業衛生についての課題調べ、発表、討論と滴定、吸光度測定と検量線作成といっ た、環境試料の定量分析に関する基本技術の習得を目指した実験・統計解析も実施する。

事前学習やグループ学習,提出物がかなり多いので,覚悟して臨まれたい。後述するように,グ ループ実習では,(予算の制約はあるが)かなり多様な課題が許容されるので,各自の自主性がこ の実習を成功させるかどうかの鍵である。

2 実習の進め方

前半に課題別討論と基本実験を行う際はA, B, Cの3班に分かれる。後半で自主的に決めた課題についてのグループ実習を行う際は各班をさらに2つずつに分ける。今年度の班分けは下表の通りである(web公開版には掲載しない)。

2.1 実習室について

初日のオリエンテーション等,全体で集合する際は,F306を使用する。班別の討論と発表は,原 則として,E701 (大気),E702 (水),E503 (産業保健)を使用する。基本実験にはE501の機器を 使用するが,全員は入りきれないので,適宜移動して作業することとする。グループ実習について は,討論などはE701,E702,E503 が時間内は利用できるが,他の場所も必要に応じて利用する必 要が生じると思われるので,適宜調整すること。

2.2 担当教員

- 中澤 港教授(E707, 内線 4551, minato-nakazawa@people.kobe-u.ac.jp)
- 長谷川菜摘 助教(E709, hasegawa@pearl.kobe-u.ac.jp)
- 靱 千恵 助教 (B304, nu_chie@people.kobe-u.ac.jp)

2.3 これまでのグループ実習テーマの例

最近は商品試験のようなテーマを選ぶ班が多いが,環境・食品・産業衛生学の講義で学んだこと を生かせるようなテーマを選んで欲しい。

- 2017 年度 「MASK」「保湿効果,カネに頼るか? 知恵に頼むか?」「電磁波と共に~スマート フォンに潜む危険~」「ハンドクリームの保湿効果~ハンドクリーム使用による水分と油分 の関係について~」「手洗いの効果」「髪は女の命!~ヘアケアで髪質はどう変わる?~」
- 2016 年度 「朝食を抜くと能力は落ちるか」「さまざまな方法の違いによる歯垢除去効果の比較」 「中身と容器の材質によって飲料容器を放置した場合の細菌繁殖は変わるか」「周囲の音で暗 記力と集中力は変わるか」「手を洗った後どうすれば手を清潔に保てるか」「日焼け止めク リームは本当に表示されているほど UV-A と UV-B をカットできるのか」
- 2015 年度 「スマホ vs トイレ汚れ」「ヒートテックの保温効果」「賞味期限と消費期限」「水の浄化」 「コンタクトレンズの汚れ」「水素水の肌保湿効果」
- 2014 年度 「布団の除菌方法の有効性」「ファブリーズの消臭効果」「手の洗い方」「何度で菌はい なくなるか?」「外干しと部屋干し」「電磁波の測定」
- 2013 年度 「不快指数とは?」,「光の種類による消毒効果」,「川の水質調査」,「3 秒ルールの有効 性」,「JINS PC の効果について」,「身の回りの細菌と食中毒」
- 2012 年度 「体温上昇」,「真の清潔とは?」,「匂いとストレスの関係」,「集中力の高め方」,「紫 外線から肌を守れ!!~UV カット繊維は万能!? 乙女の敵紫外線~」,「ドローイング法と EMS による腹部脂肪減少効果の比較」
- **2011 年度** 「身近な電磁波の危険性」,「上から化粧水」,「放射能汚染の実態」,「食品の抗菌効果」, 「油の酸化度」,「Mystery of Sleepiness」
- 2001 年度 「嗚呼電磁波」,「暖房と換気」,「細菌の分布」,「紫外線の恐怖」,「衣服内気候の変化」, 「生活排水の汚染について」

2.4 日程

口	日付	時限	A班	B班	C 班	
1	10日2日	4	オリエンテーション、グループ実習テーマ紹介			
	10月2日	5	グル	ープ実習課題検討(班、	ごと)	
2	10日0日	4	グルー	プ実習方法論の検討(日	班ごと)	
	ТОДЭЦ	5	グループ実習実	『施計画作成(班ごと)	→必要物品発注	
3	10日16日	4	大気・環境問題討論	水討論	産業保健討論	
5		5	大気・環境問題実習	水実習	産業保健実習	
Δ	4 10月23日 4 5		産業保健討論	大気・環境問題討論	水討論	
-			産業保健実習	大気・環境問題実習	水実習	
5	10 日 20 日 4		水討論	産業保健討論	大気・環境問題討論	
5	5 10月30日	5	水実習	産業保健実習	大気・環境問題実習	
6	11月6日	4,5	実験デ	ータの統計解析入門(注	寅習)†	
7	11月13日	4,5	グ	ループ実習*(6 班別々	に)	
8	11月20日	4, 5	グループ実習*(6 班別々に)			
*	11月27日	*	解剖実習のため、公衆衛生学実習はありません。			
*	12月4日	*	解剖実習のた	こめ、公衆衛生学実習は	ありません。	
9	12月11日	4, 5	グループまとめ・	・プレゼンファイルを提	出(6班別々に)	
10	12月18日	4, 5	成果発表会			

; 来年度から図書館の情報処理室で実施することも考えます。

2.5 提出物と成績評価の方法

第3回~第5回は、4限に3つのテーマについての討論会を行う。水、大気・環境問題、産業保健に関わる問題(上述のテーマから班内で分担)について自主的に文献調べを行い、A4で1枚の 資料をまとめ(事前に班の人数+教員への提出用1部を、カードを中澤教授から借り、事務局総務 課前のコピー機でコピー)、各人約5分を持ち時間として発表し、討論を行う。

討論のモデレータは大学院生 TA (Teaching Assistant) が行い,各人について5段階で評価する。 討論会に引き続き,各テーマについての基礎実験を行う(出席を取る)。詳細は後述するが,個人 レポートを(全部まとめて最終日までに)提出することとし,これについても教員が5段階で評価 する*¹。

後半はグループ実習となる。実習内容によっては正規の実習時間ではできない場合もあるため, 出席等はとらないが,積極的に参加して欲しい。

最終日は、パワーポイントなどを用い、班ごとに成果発表を行う。各班の持ち時間は 25 分以内 とする。プレゼンテーションファイル(各班員がどの部分に貢献したかを明示すること*²)と配付 資料ファイル(あれば)を発表会の前日までに中澤教授に電子媒体で提出すること。グループ実習

^{*1} 配点としてはこの個人レポートが最も重要で、約5割をこの個人レポートの点で評価する。

^{*2} 最近は学術論文でも共著者一人一人がその論文のどの部分に貢献したのかを明記する必要がある。

についての評価は, (1) グループ実習への貢献度, (2) 配付資料と成果発表, 討論について教員が評価(班単位の評価) する。

成績評価は以上を総合して行う。

2.6 基礎実験の個人レポート作成上の注意

基礎実験の個人レポートを作成する際,目的・方法については「実習テキストの通り」と書いて 省略して差し支えない。ただし,何らかの事情でテキストと異なることをした場合は明記する。

生データは班内で共有するのでレポートに載せる必要は無い。そのデータをテキストに記載され ている方法に従って統計解析を各自実行して得られた結果を求め,図や表の形にまとめ,その結果 の意味を解釈し考察することが最も重要である。

考察に際しては、このテキストだけではなく、他の教科書や資料、できれば論文などを探して 比較することを推奨する。その際、丸写しにせず適切に引用し、引用文献としてレポートに書 誌情報を適切に記載すること(文献の書き方はhttps://jipsti.jst.go.jp/sist/pdf/SIST_ booklet2011.pdf などが参考になる)。

なお,基礎実験の結果は班ごとに共通になるはずだが(ただし,計算結果をシェアするのではな く,生データをシェアして,計算も各自やる方が,卒業研究などでも役に立つはずである),そこ からの考察は一人ずつ異なるはずなので,他人のレポートを絶対に丸写ししないこと。

3 討論について

以下の討論テーマから1人1つのトピックを選び、レジュメを作って発表し、相互に討論する。 人数が12人の場合は、「水」「大気・環境問題」「産業保健」のそれぞれについて最後のトピック は含めないで良い。人数が14人以上になってしまった場合は、ここに含まれていないテーマを、 「水」「大気・環境問題」「産業保健」のそれぞれについて追加すること。

3.1 水

- 1. 水質汚染1(代表的な水質汚染事例と健康被害)
- 2. 水質汚染2(日本の飲料水の水質基準とその現況)
- 3. 水質汚染3(日本の河川水の水質基準とその現況)
- 4. 水の BOD の意味と測定法・測定原理
- 5. 水の COD の意味と測定法・測定原理
- 6. 水の電気伝導度の意味と測定法・測定原理
- 7. 水の溶存酸素の意味と測定法・測定原理
- 8. 水の pH の意味と測定法・測定原理
- 9. 水質管理1(おいしい水)
- 10. 水質管理2(途上国における浄水)

- 11. 水質管理3(水道水の配水管理)
- 12. 日本の水事情(水源,用水,ダム等)
- 13. 世界の水事情(黄河の枯渇,旱魃等)

3.2 大気·環境問題

- 1. 大気汚染1(NOxの測定法と NOx がもたらす健康被害)
- 2. 大気汚染 2 (SOx の測定法と SOx がもたらす健康被害)
- 3. 大気汚染3(二酸化炭素の測定法と二酸化炭素がもたらす健康被害)
- 4. 大気汚染4(浮遊粒子状物質とは何か。その測定法と浮遊粒子状物質がもたらす健康被害)
- 5. 大気汚染5(アスベストの測定法とアスベストがもたらす健康被害)
- 6. 土壌の有害化学物質1(内分泌攪乱化学物質について,発生原因,健康被害,測定上の難点)
- 7. 土壌の有害化学物質 2 (PCB について,発生原因,健康被害,測定上の難点)
- 8. 土壌の有害化学物質3(ヒ素について,発生原因,健康被害,測定上の難点)
- 9. 放射線1(紫外線について,健康影響と規制,測定法)
- 10. 放射線2(電磁波について,健康影響と規制,測定法)
- 11. 放射線3(電離放射線について,健康影響と規制,測定法)
- 12. 地球環境問題1(森林伐採がもたらす健康影響と対策)
- 13. 地球環境問題2(気候変動がもたらす健康影響と対策)

3.3 産業保健

- 1. メンタルヘルス1(ストレスの評価法について,厚労省が事業者に義務づけているストレス チェックも含めて)
- 2. メンタルヘルス2(過労死について,現状と原因と対策)
- 3. メンタルヘルス3(気分障害~とくに抑鬱について,現状と原因と対策)
- 4. 金属中毒1(鉛中毒について,産業現場における原因,症状,対処,検査法)
- 5. 金属中毒2(水銀中毒について,産業現場における原因,症状,対処,検査法)
- 6. 金属中毒3(カドミウム中毒について,原因,症状,対処,検査法)
- 7. 毒物による中毒(シアン化合物, VX ガス, サリンについて, それぞれ症状, 対処方法, 確 定診断のための検査項目)
- 8. 有機溶剤による急性中毒(代表的な物質ごとに症状,検査項目,とくに代謝産物)
- 9. 有機溶剤による慢性中毒(代表的な物質ごとに症状、検査項目、とくに代謝産物)
- 10. 農薬による急性中毒(代表的な物質ごとに症状と検査項目)
- 11. 農薬による慢性中毒(代表的な物質ごとに症状と検査項目)
- 12. 化学物質取扱者の健康管理1(特定業務従事者健康診断)

13. 化学物質取扱者の健康管理2(特定化学物質障害予防規則)

4 水の基本実験

4.1 概要

3 種類の検水(いくつかのミネラルウォータ及び水道水から予め 200 ml ずつ三角フラスコに入 れてある)を用い,キレート滴定と簡易キット(パックテストまたはドロップテスト)により3回 ずつ総硬度を求め,結果を比較する。硬度以外の指標としては,pH,電気伝導度,遊離残留塩素を 測定する(どれも3回以上繰り返して測定する)。統計解析は,総硬度については,測定方法の違 いと検水の違いという2つの要因によって測定値を説明する二元配置分散分析を行う。pH や電気 伝導度については,検水の違いによって測定値に有意差が出るか一元配置分散分析を行う。

すべての結果から、どの検水がどのミネラルウォータなのかを推測してみよう。

4.2 硬度とは

硬度 (hardness) とは、水中の Ca²⁺ 及び Mg²⁺ の量を表す尺度である。日本と米国では対応する CaCO₃ の mg/ ℓ に換算*³して表す。ドイツでは対応する CaO の 10 mg/ ℓ に対して硬度 1 度, フラ ンスでは対応する CaCO₃ の 10 mg/ ℓ に対して硬度 1 度とする。イギリスでは水 1 ガロン (=4.546 ℓ) に CaCO₃ を 1 グレイン (=0.0648 g) 含む濃度に相当する場合に硬度 1 度とする。日本でも昭 和 25 年までドイツ式の硬度だったので、古いデータには要注意。

総硬度(水中の Ca²⁺ 及び Mg²⁺ の総量によって示される硬度),カルシウム硬度(Ca²⁺ の総量に よって示される硬度),マグネシウム硬度(Mg²⁺の総量によって示される硬度),永久硬度(硫酸 塩,硝酸塩,塩化物などのような,煮沸によって析出しない Ca 塩及び Mg 塩による硬度),一時硬 度(重炭酸塩のような,煮沸によって析出する Ca 塩及び Mg 塩による硬度)といった区別がある。

自然水中の濃度は、日本の河川水では Ca が 10.4~13.0(mg/ℓ), Mg が 3.8~4.8(mg/ℓ),地下水で は Ca が 17.6~22.0(mg/ℓ), Mg が 6.1~7.3(mg/ℓ)。地下水の方が若干高い。海水中の濃度は、これ らより 2 桁ほど高い。海外のミネラルウォータには海水並みに硬度が高いものも存在する。

4.3 キレート滴定法による総硬度の測定

最近のラボでは ICP-MS などによって Ca²⁺ と Mg²⁺ イオンの濃度を直接定量し,そこから硬 度を計算するのが普通である。ただし,滴定は化学実験技法の基礎技術として重要なので,本実習 で取り上げている。

(原理) EBT は pH10 付近で青色を呈するが, Ca²⁺ や Mg²⁺ などの金属イオンが存在する場合に

^{*3} 水中のカルシウムイオンとマグネシウムイオンのモル濃度の和に相当するモル濃度の炭酸カルシウムの1ℓ中のミリ グラム数を計算する。

は,キレート生成定数の大きさにしたがって,まず Mg²⁺,ついで Ca²⁺ と反応してキレート 化合物を生成してブドウ赤色を呈する。

このキレート化合物を含む水溶液に EDTA・2Na 溶液を滴下すると EDTA の方が EBT より もこれらの金属へのキレート生成定数が大きいため Ca²⁺, Mg²⁺ の順に EDTA が反応し, 無 色のキレート化合物が生成する。

反応終了(滴定終末点)とともに液の色は遊離した EBT によって青色に変化する。反応終 末点は Mg-EBT と EDTA の反応の方が Ca-EBT と EDTA との反応よりも識別しやすいこ とと、Ca-EBT と Mg-EBT が共存した場合に反応終末点近くでは Mg-EBT のみになってい ることから、本法では予め Mg を添加して滴定終末点の識別を鋭敏にする。

- (器具・薬品)100 mℓ メスフラスコ3つ
 - 1 ℓ メスフラスコ1つ
 - 褐色瓶1つ
 - 100 m ℓ メスシリンダー 2 本
 - パラフィルム
 - 100 *m*ℓ の三角フラスコ2つ
 - ビュレット2つ
 - 漏斗2つ
 - 500 ml の洗瓶 1 つ
- (薬品) 1. 0.01 mol/ℓ MgCl₂ 溶液: 塩化マグネシウム六水和物, 99.9% グレードの 0.2033 g を水
 に溶かし、全量を 100 mℓ とする。*4
 - EBT 試液: エリオクロムブラック T(C₂₀H₁₂N₃O₇SNa) 0.5 g および塩酸ヒドロキシルア ミン (NH₂OH · HCl) 4.5 g を 90%(v/v) エタノール 100 ml に溶かし,褐色瓶に入れて冷 暗所に保存する(有効期間約1ヶ月)。
 - アンモニア緩衝液: 塩化アンモニウム 6.75 g に 28% アンモニア水 57 ml を加えて溶かし、水を加えて全量を 100 ml とする。滴定の至適 pH は 10 ± 0.1 ときわめて狭いので、この緩衝液を加える必要がある*5。
 - 0.01 mol/ℓ EDTA 溶液: 和光純薬 0.01M 滴定液を購入する。力価 F は表示されているの で標定不要である *⁶。
- (方法) 以下,1検水の操作手順を箇条書きで記す。各検水について3回の測定を行う。
 - 1. 検水 50 *m*ℓ をメスシリンダーで三角フラスコに量りとる^{*7}。

^{*4} 衛生試験法では酸化マグネシウムと塩酸から作成することになっているが、現在では高純度の塩化マグネシウムが購入可能なので購入する。

^{*5} 和光純薬の炭酸塩緩衝液第2種 pH10.01 JCSS 認定品 037-16145 を購入してもよい。

^{*6} 滴定液を購入せず調製する場合は、エチレンジアミン四酢酸二ナトリウム二水和物(EDTA2Na·2H₂O, MW=372.24; 同仁, 特級)の約3.8gをメスフラスコにとり、水に溶かして全量を1000 mℓとする。EDTAを量って水に溶かす場 合は正確な調製が困難なため、標定により力価Fを求める。調製した EDTA 水溶液 10.0 mℓを三角フラスコにとり 水を加えて100 mℓとし、これに上記アンモニア緩衝液を2 mℓ, EBT 試液を7~8 滴加え、溶液が微紅色を呈するま で 0.01 mol/ℓ MgCl₂ 溶液で滴定し、要した mℓ 数 a を求め、F=a/10 によって力価Fを算定する。

^{*&}lt;sup>7</sup> 衛生試験法では,この後,他の金属イオンのマスキング剤として 10% シアン化カリウム (KCN) 水溶液を数滴加える

- 2. 0.01 mol/ℓ MgCl₂ 溶液を 0.5 mℓ 正確に加える。
- 3. アンモニア緩衝液を1ml加える。
- 4. EBT 試液を 5~6 滴加える。
- 0.01 mol/ℓ EDTA 溶液で試験溶液の色が青色を呈するまで滴定し、ここに要した量 b (mℓ)を求める。
- 6. 総硬度 (CaCO₃ mg/ℓ) を,

$$\frac{1000 \times (b \times F - 0.5)}{50}$$

により算出する*8。

4.4 その他の測定

パックテストまたはドロップテストの総硬度測定キットにより,キレート滴定と同様に各検水に ついて3回ずつ総硬度の測定を行う。方法はキットの説明書を参照すること。

pH は pH メータ,電気伝導度はポータブル電気伝導度計(TwinCond),遊離残留塩素はハンナ インスツルメンツ残留塩素計(HI 96701C)により,各検水を3回ずつ測定する。方法は機器付 属の説明書を参照すること。なお,遊離残留塩素については試験紙も使えるので,その結果と HI 96701Cの測定結果が矛盾しないかもチェックすること。

データは総硬度の分析用のファイルと,遊離残留塩素,電気伝導度,pHの分析用のファイル に分けて保存する。総硬度の分析用のファイルは,1行目に変数名として SAMPLE, METHOD, HARDNESS と入力し,1列目には検水の種類として A または B または C を入力し,2列目は測 定方法が滴定なのかパックテストなのかを入力し,3列目は総硬度測定値を入力する。3回ずつ測 定するので,変数名を含めて 19行3列の表になるはずである。もう1つのファイルは,1行目に 変数名として SAMPLE, RC, EC, pH と入力し,1列目には検水種類,2列目に遊離残留塩素測定 値,3列目に電気伝導度測定値,4列目に pH 測定値を入力する。こちらは変数名を含めて 10行4 列の表になるはずである。

5 大気・環境問題

以下3種類の測定を行うので, 班内を3つのグループに分ける。

ただし、レポートは全部について書くので、自分が直接やっていない分も班内で情報をシェアす ること。

ことになっているが、危険なので実習では省く。そのため滴定終末点が若干不明瞭になるがやむをえない。

^{*8} 炭酸カルシウムの分子量は 100.09 なので,約 100 と見なしてこの式は立てられている。b×Fから引く 0.5 は予め加 える 0.01 mol/ℓ MgCl₂ 溶液の量,1000 を掛けるのは g から mg への換算,最後に 50 で割るのは検水量が 50 mℓ だ からである。

5.1 (A) 二酸化炭素測定グループ(2~3人)

- 1. 室内空気と屋外空気と呼気を 30 リットルのポリ袋に採取する。
- 2. 呼気は 2L, 室内空気と屋外空気は 2LC の検知管を用いて,ポリ袋に採取した空気の二酸化炭素測定を行う。測定はそれぞれにつき 3 回以上行う。
- 3. 室内空気と屋外空気については、同時に自動計測器でも測定する。
- 4. 呼気はレベルが違いすぎて統計解析の意味がないので平均値と標準偏差だけ求めれば良い。 室内空気と屋外空気で二酸化炭素濃度に有意な差がないかどうかを2群の平均値の差のt検 定により検討する(自動計測器の測定値は、検知管の測定値の正しさについて考察するため に使用すればよく、統計解析はしなくて良い)。

必要な消耗品は以下の通りである。

- 30ℓのポリ袋3枚×3班
- ガステック検知管 2L5 本, 2LC10 本) × 3 班

5.2 (B) 粉塵・騒音グループ(2~3人)

昨年まではハイボリウムエアサンプラーを用い,きわめて小さな質量の測定をしていたが,サン プリング時間を十分にとることができず,E501の電子天秤の精度では不十分な測定しかできない ため、今年から道路沿いでデジタル粉塵計と騒音計で連続的に同時測定をし、目視により1分ごと の交通量も記録し,それらの経時的な相関関係を検討することとした。なお、雨天時は道路沿いで の計測ができないため、埃っぽい廊下を歩く人が経時的に変化する状況を設定し、屋内で測定する こととする。

実習で用いるデジタル粉塵計では個数濃度しか測定できないが, PM2.5 や PM10 の環境基準は 環境省の文書*⁹に示されているように質量濃度で定められており, 論文*¹⁰に示されているように個 数濃度と質量濃度の関係は単純ではないので,この実習での測定値の絶対レベルを評価することは できない。しかし相対値としては十分使えると考えられる*¹¹。また,交通量は粉塵や騒音のレベル に影響を与えると考えられるので,それらの相関関係を検討するのが,この項目の実習目的である。

http://www.jsae-net.org/Pro-study/H28ERCA_170307.pdf

^{*9} http://www.env.go.jp/council/former2013/07air/y070-25/mat04-2.pdf

 $^{^{*10}}$ https://www.jrias.or.jp/report/pdf/21J1.2.16.pdf \diamond

^{*&}lt;sup>11</sup> ちなみに,室内空気の参考値として, small(粒径 0.5µm 以上の小微粒子の 0.01ft³ 当たりの個数)の値が 0-75 で EXCELLENT, 75-150 で VERY GOOD, 150-300 で GOOD, 300-1050 で FAIR, 1050-3000 で POOR, 3000 以上 で VERY POOR という値が示されているが,あくまで目安である。

- デジタル粉塵計(内蔵バッテリーの充電が十分であることを確認する)と騒音計と外付け バッテリー(充電済であることを確認する)を持って測定場所(上図参照)に行く。デジタ ル粉塵計も騒音源となるため、約3メートルの間をおいて測定準備する。
- 2. デジタル粉塵計は電源ボタンを入れると自動的に1分ごとに粉塵濃度の記録が開始される。 騒音計は外付けバッテリーを USB ケーブルでつなげば電源が入り(ただし, POWER ボ タンを長押しして液晶が点滅する状態にしないと2分半でオートパワーオフしてしまう), FAST/SLOW と書かれているボタンを長押しすると記録が開始される。同時に,手押しカ ウンターを使って1分ごとに目の前を通る車の通過台数を記録する。20分間,なるべく同 時に測定開始し,同時に終了する(デジタル粉塵計は電源ボタンをオフするだけで良い。騒 音計は FAST/SLOW ボタンを長押しする。長押しする前に電源が切れると何も記録されな いので注意)。
- デジタル粉塵計を E501 入口脇のデスクトップ機に付属の RS232C-USB ケーブルで接続し、 Dylos Logger というソフトを起動する。COM ポートを正しく設定し、記録先のファイルを 設定し、Download History のアイコンをクリックしてから出てくるウィンドウで Download ボタンをクリックするとデジタル粉塵計に記録されたデータがダウンロードされて表示され

るので、それをファイルに保存する。テキストファイルなので、エディタで開いて最初の7 行を消し、拡張子を csv に変えて保存すれば Excel で開ける。または、エディタ上で必要な 部分を選択してコピーし、「貼り付け」の「テキストファイルウィザード」で区切り文字と してコンマを指定しても良い。

4. 騒音計のデータは microSD カードに wsm という拡張子が付いたバイナリファイルとして記録されているので、E501 入口脇のデスクトップ機に microSD カードを差し込み、SoundLinkというソフトを起動して、左端のアイコン(Open File)をクリックして microSD カードからデータを読み込む。1 秒ごとの A 特性での騒音レベル測定値 L_A が表示される。ここで左から2番目のアイコンをクリックするとタブ区切りテキスト形式で保存できるので(ファイル形式を選択するだけで良い。なお、Excel 形式でも保存できるはずだがエラーが発生するのでテキスト形式を選ぶこと)、1分ごとの L_{Aeq}(等価騒音レベル)を計算する。計算式は以下である。

$$L_{Aeq} = 10 \log_{10} \left(\frac{1}{60} \sum_{i=1}^{60} 10^{L_A/10} \right)$$

- 5. 粉塵の生データを Sheet1, 騒音の生データを Sheet2 にした Excel 形式のファイルをウェブ サイトにアップロードするので,各自ダウンロードしてその後の計算をする。
- 6. Excel の C 列に 1 秒ごとの測定データが入っているとすると, D2 のセルに

=10^(C2/10)

と入力してコピーし, D3 から D1201 までのセルに貼り付ける。次に E2 のセルに

=10*LOG10(AVERAGE(D2:D61))

と入力し, それをコピーして, E62, E122, E182, ... と貼り付けていくと, E列に1分ごとの等価騒音レベルが得られる。

7. 最終的に、1 列目が記録時刻、2 列目が small (粒径 0.5µm 以上の小微粒子の 1ft³, つまり約 28ℓ 当たりの個数。ディスプレイ表示に比べると 100 倍されているので注意)、3 列目がlarge (粒径 2.5µm 以上の大微粒子の 1ft³, つまり約 28ℓ 当たりの個数。こちらもディスプレイ表示の 100 倍)、4 列目は PM2.5 の個数濃度(0.01ft³ 当たり)の計算値として small の値から large の値を引いた結果を 100 で割るという式を入れてコピーし、5 列目は開始時刻を合わせて 1 分ごとの L_{Aeq} の値を貼り付け(形式を選択して貼り付け,で値のみ貼り付けるか,数値をキーボードから入力する)、6 列目に車の通過台数(雨天時は人の通過人数)を入力した表を Excel 上に作ってテキスト(タブ区切り)またはテキスト(csv)形式で保存する。このファイルを使って相関関係を検討する他、回帰分析を行っても良い。

消耗品は無い。

5.3 (C) ザルツマン法により大気中二酸化窒素を測定するグループ(残りの人)

この項目では、プレートリーダーにより吸光度を測定することと、検量線から濃度を求めるとい う技術の習得を目的とする。また、複数の地点間での二酸化窒素濃度を比較し、もし統計学的に有 意な違いがあれば、その理由を考察する。

- 予め用意された「亜硝酸ナトリウム溶液原液」を1mℓとり、イオン交換水を加えて100mℓ とし、亜硝酸ナトリウム溶液とする*¹²つまり、「原液」を100倍希釈する。この「亜硝酸ナ トリウム溶液」1.0mℓ = 0.01mℓ NO₂(標準状態)である。
- 2.「亜硝酸ナトリウム溶液」を 0 (ブランク), 0.2, 0.4, 0.8, 1.2, 1.6 *m*ℓ とって試験管にいれ, それぞれイオン交換水を加えて全量を 10 *m*ℓ とする (標準希釈系列)*¹³。
- 3. 70ℓのポリ袋を5枚使い,いろいろな場所(ボイラーの近く,バイクや自動車のエンジンの 近くなど高温になるところや,排気ガスなどは濃度が高いと考えられるので,そういった場 所を含める)で大気を捕集してくる。
- 4. 10 mℓ のメスピペットかホールピペットを使い(安全ピペッターを使うと楽である), 1% 炭酸カリウム溶液*¹⁴を 10 mℓ 加えて良く振ってから,袋の中身を薬皿(大きめのもの)に取り出す(このとき重さを量れば回収率が計算できるが,今回は 100% と仮定する)。これがサンプル溶液となる。
- 5. サンプル溶液と標準希釈系列から 2 mℓ ずつ試験管にとり、ザルツマン試薬を 3 mℓ 加えて 10~15 分放置後、ピペットでマイクロプレートに移す。(少なくともマイクロプレート上で は) Triplicate する。
- 6. プレートリーダーにより 545 nm 付近の吸光度を測定し、検量線*¹⁵により各サンプル溶液中の二酸化窒素量 (µℓ) を求める。捕集した大気サンプルの容積(今回は 70ℓと仮定する)で割って 100 万を掛ければ*¹⁶, ppm 単位の濃度を求めることができる。

^{*&}lt;sup>12</sup> この方法ではザルツマン係数 0.84 を採用しているので亜硝酸ナトリウム (NaNO₂) 2.59 g が 0 ℃, 1 気圧での NO₂ ガスの 1 ℓ に相当する。標準状態(0 ℃, 1.03kPa) で気体 1 mol は 22.4 ℓ なので,気体 1 ℓ は 1/22.4 mol となる。こ の量の NO₂ ガスを NaNO₂ (MW=69) の重量に換算するには、上記のザルツマン係数を考慮して(1/22.4) × 0.84 × 69 = 2.59 g となる。2.59 g/ℓ の水溶液を作るため、0.259 g を 100 mℓ に溶かすのが標準的な方法だが、0.5 M 水溶 液を 7.5 mℓ とってメスフラスコで 100 mℓ まで純水を加えるのと同等なので、本実習ではそちらを作っておいて「亜 硝酸ナトリウム溶液原液」とする。ザルツマン係数 0.84 の意味は、1 mol の NO₂ ガスが水溶液中で NO₂ イオンを 0.84 mol 生じ、ザルツマン試薬と反応するのが NO₅ イオンということである。

^{*&}lt;sup>13</sup>標準状態での二酸化窒素の体積としては、0,2,4,8,12,16 µℓ に相当する。これをボイル=シャルルの法則を使って サンプリング時の気温・気圧に合わせて換算しても良いが、せいぜい 1% しか変わらないので無視しても良い(70ℓ の空気がポリ袋に採取できているかどうか、二酸化窒素のどのくらいが炭酸カリウム水溶液に溶かし込めたか、と いった誤差の方がずっと大きいため)

^{*&}lt;sup>14</sup> トリエタノールアミンの 10% アセトン溶液の方が良いが,炭酸カリウム溶液でも代用可能。おそらく水でも良いは ずだが,たぶん炭酸カリウム溶液の方が回収率が良いはず。

^{*&}lt;sup>15</sup> Triplicate した中で明らかに測定ミスと思われる外れ値が1つあるときは,そのデータのみ分析から外す。3つが互いにバラバラな場合は再測定(再実験ではない)する。EZR を使って計算する方法は後述するが,実験時点では方眼紙を使い,著しく直線性が悪くないか確認する。あまりに直線性が悪い場合は再実験となる。

^{*&}lt;sup>16</sup> μℓ は ℓ の 100 万分の 1 だから,検量線の横軸を μℓ 単位の二酸化窒素量にしておけば,単純に 70 で割るだけで良い。

7. データファイルとしては、1 列目にサンプリング場所、2 列目に二酸化窒素濃度を入力し(1 行目は変数名として、1 列目を SAMPLE、2 列目を NO2 とする)、タブ区切りまたはコンマ 区切りテキスト形式で保存する。16 行 2 列のファイルになるはずである。一元配置分散分 析を使ってサンプル間に二酸化窒素濃度に差がないかどうかを調べる。

必要な器具と消耗品は以下の通り。ザルツマン試薬を含む廃液は重曹で中和して廃棄する。

- 100 *m*ℓ のメスフラスコ1つ
- 50~300 mℓ 程度の大きさの三角フラスコ2つ(亜硝酸ナトリウム溶液用とザルツマン試薬用)
- 100 μℓ のピペットを奥まで差し込める太さの試験管多数(最低限,22本は必要。本当はザ ルツマン試薬を反応させること自体 triplicate したいので 44 本欲しい)
- P1000 と P100 のピペット及びチップ多数
- 70ℓのポリ袋5枚×3班
- 96 穴マイクロプレート× 3 班
- 0.5 M 亜硝酸ナトリウム水溶液(毎年 7.5 ml だけ使う)
- 1% 炭酸カリウム水溶液 10 mℓ × 5 × 3 班= 150 mℓ (あまり失敗しないので 200 mℓ もあれば十分)
- ザルツマン試薬 3 ml× 11× 3 班= 99 ml (ただしやり直しなどあるので,毎年 200 ml 程 度使う)
- ザルツマン試薬の中和用重曹

6 産業保健

照度の異なる作業環境下で100マス計算などの単純作業を行い,連続単純作業にともなう作業効 率と正確さの低下(及びストレスの増加)が照度の影響を受けるかを調べる。記録者はデジタル温 湿度計により温度と湿度も計測し,温度や湿度の影響がないかも考慮する(温度や湿度があまり変 わらない条件で実験すべきである)。

短期的なストレスを簡便に測定するには,唾液をサンプルとして使う方法がいくつか開発されて いる。ストレスマーカーとしてはコルチゾール,クロモグラニン A,アミラーゼなどが有名である が,コルチゾールやクロモグラニン A を測定するには ELISA や RIA が必要であり高価なので,本 実習ではニプロから販売されている唾液アミラーゼモニタ*¹⁷を用いる。この測定はきわめて簡単 に操作でき,測定値もデジタルで表示されるので,チップを正しく舌下に当てさえすれば測定ミス の可能性は低いのが利点である。

^{*&}lt;sup>17</sup> 測定原理等については,東朋幸,山口昌樹,出口満生,若杉純一,水野康文:唾液アミラーゼ活性を利用した交感神 経活動モニタと運転ストレスの評価.信学技報,2004-12: 35-40,2004.を参照。

なお,野村ら (2010)*¹⁸によれば,コルチゾールは精神ストレスに伴う視床下部-下垂体-副腎系の ストレス反応を反映する物質であるため,強い緊張や不安を伴うストレッサーに応じて濃度が上昇 するが,認知課題や単純な精神作業に対しては増加しないが,唾液アミラーゼやクロモグラニン A は交感神経-副腎髄質系の賦活化を反映するため,スピーチ,ワープロ作業,高速道路走行,認知テ スト,騒音刺激等に対して一過性の増加を示すことが知られている。したがって,本実験のバイオ マーカーとしては唾液アミラーゼやクロモグラニン A の方がコルチゾールより適している。

本項の目的はクロスオーバー研究のデザインで実験し、その解析法を学ぶことである。

- テンキーがついたノートパソコンが6台用意してあり, Ten2Ten という100マス計算のソフトウェアが入っている(1桁の足し算を100回する。答えが2桁になる場合は1の位のみ入力する。正解しないと先に進まず,かかった時間と誤答の回数が自動的に測定される。5回分まで別々の記録として保存できる)ので,これを作業と見なす(ノートパソコンがない場合は紙で作業しストップウォッチで計時。答え合わせが必要なので面倒)。
- 2. 各班パソコン台数×2名が被験者となり,残りの人が測定・記録者となる(予め記録用紙を 作ると便利)。被験者はランダムに2群に分かれる(例:被験者人数をXとすると,名簿順 に1~Xとして,Rのコンソールウィンドウに

sample(1:X, as.integer(X/2), rep=FALSE)

入力して実行し,表示された番号を第1群とする)。第1群は先に暗条件,後で明条件で作 業する。第2群はその逆順にする。

- 3. 原則として暗条件は部屋の照明を付けず,明条件は部屋の照明を付けることで実現する。室内の位置によって明るさがあまり変わらないように工夫する。その他,椅子のセッティングなども揃える。各条件において,測定・記録者は照度計により照度を,デジタル温湿度計により温度と湿度を測定し記録する。全体の実験順序を,第1群暗,第2群明,第1群明,第2群暗とすることにより,実験の連続による carry-over 効果を避ける。
- 各条件において、被験者がすることは以下の通りである。まず唾液アミラーゼモニタにより ストレスを測定する。次いで、作業を3回実行する。終了後に再びストレスを測定する。測 定・記録者は、ストレスと、作業結果のうち所要時間と誤答回数をそれぞれ記録する。
- 5. 測定・記録者はすべての結果を Excel に入力し,ファイルを全員に配布すること。結果の分析は一人ずつ EZR などを用いて行い,最終レポートに記載する。

必要な器具・消耗品は以下の通り。

- 照度計
- 温湿度計
- テンキー付きの Windows ノートパソコン(6台)

^{*&}lt;sup>18</sup> 野村収作,水野統太,野澤昭雄,浅野裕俊,井出秀人:短期精神ストレスマーカーとしての唾液中クロモグラニンAの特性評価. 生体医工学, 48(2): 207-212.

- ニプロ唾液アミラーゼモニタ(2台)
- 唾液アミラーゼ測定チップ(12×4×3班=144<160枚=8袋)

7 統計解析の方法

本実習では,得られた結果について,さまざまな統計解析が必要となる。既に自分が使い慣れた ソフトウェアがあれば,それで解析しても良いが,とくにそういうソフトウェアがなければ,EZR (実習用ノートパソコンにインストール済)を用いることをお勧めする。

EZR とは自治医科大学の神田善伸教授が開発した,保健医療分野で良く使われる統計解析をメニューから選んで実行できるようにしたフリーソフトである。統計解析自体は R というシステムを利用して行い,EZR は R の機能をメニューから呼び出すためのフロントエンドなので,得られる結果はの信頼性は十分に高く,論文投稿にも問題なく利用できる。

R も EZR もフリーソフトなので,自分のコンピュータにインストールすることも自由にできる。 R 関連のソフトウェアは CRAN (The Comprehensive R Archive Network) からダウンロードするこ とができる。CRAN のミラーサイトが各国に存在し,ダウンロードは国内のミラーサイトからする ことが推奨されているので,日本では統計数理研究所のサイト (http://cran.ism.ac.jp/)を 利用すると良い。Windows で EZR を利用するなら,最初から EZR まで一体になったインストー ラファイルを自治医大の web サイト (http://www.jichi.ac.jp/saitama-sct/SaitamaHP. files/statmed.html) からダウンロードし,ダブルクリックしてインストールするのが最も簡単 である。R をインストールしてから EZR のパッケージをインストールするには,R を起動して表 示されるプロンプトに対して,

install.packages("Rcmdr", dep=TRUE)
install.packages("RcmdrPlugin.EZR\index{EZR}", dep=TRUE)

と打てば良い。ここから EZR を起動するには、いったん library(Rcmdr) と打って R コマン ダーを起動し、その「ツール」メニューから「Rcmdr プラグインのロード」を選び、プラグインと して RcmdrPlugin.EZR を選んで OK ボタンをクリックする。少し待つと、「R コマンダーを再起 動しないとプラグインを利用できません。再起動しますか?」と尋ねるダイアログが表示されるの で、「はい (Y)」をクリックすると EZR が起動する。この際、オリジナルの Rcmdr メニューはメ ニュー右端の「標準メニュー」に残っている。

なお,Windows 環境で自治医大のサイトからダウンロードしたインストーラで EZR 組み込み済 みの R をインストールした場合は,デスクトップにできている EZR on R (64 ビット版の OS では 64 ビット版と 32 ビット版の両方が入るが,動作する環境なら 64 ビット版がお勧め)のアイコン から起動すると,R 本体が起動した後で自動的に EZR のメニューまで起動させてくれる。 ーコラム:3つ以上の値を測る3つの理由-

- triplicate の理由 本実習の二酸化窒素測定では、プレートリーダーには同じサンプルを3箇所のウェル に入れて、3つずつの値を測定した。ウェルの中に空気が入ってしまった場合など、2つしか測っ ていなくて2つの値がかけ離れていると、どちらが正しいかわからないが、3つあれば、2つ以 上のウェルに空気が混入してしまう可能性は低いので、おそらく近い2つの値の方が正しいだろ うと判定できる。duplicate でなく triplicate するのはそのためである。もちろん、triplicate でも 96 穴のプレートならばいっぺんに全部測れるくらいしかサンプルがなく、コストが変わらないと いうのも大きな理由である。
- サンプルサイズが3以上でなくてはいけない理由 滴定や二酸化炭素濃度測定を1つのサンプルについ て3回以上した理由は、2つ以上のサンプル間で平均値を比べる際のバラツキの信頼性を担保す るためである。2つしか値がないと、個々の測定値が平均値から相対的にどれくらい外れている かを評価できない。偏差の絶対値が標準偏差と一致してしまうため、実測値が何であろうと、偏 差値を計算すると大きい方が60、小さい方が40になってしまう。
- 検量線を書くための標準試料が3つ以上の濃度でなくてはいけない理由 検量線は,予め濃度または絶 対量がわかっている標準試料を横軸に取り,縦軸に吸光度などをとって,両者の関係を直線とし て作図し(統計学的には後述する回帰直線),測定したい未知試料の吸光度から濃度または絶対量 を逆算するために用いる。2種類の標準試料しかないと,直線は必ず2つの測定点を通ってしま うので,標準試料調製に失敗していても気づくことすらできない。液体の塩分濃度の簡易測定器 であるカーディソルト(堀場製作所)などでも,純水でゼロ点調整後のスロープの調整には0.1% と5%の標準液で校正する,3点校正を行う。標準液の保存状態が悪くて濃度が狂ってしまって いると校正がうまくできないが,そのことに気づくことができるのが3点校正のメリットである (その場合は未開封の標準液を用意して校正をやり直す)。

7.1 実験計画法

実験的研究の肝はデザインである。デザインが悪い研究から良いデータは生まれない。実験計画 法は, R.A. Fisher がロザムステッドで行った農学研究に始まるが,保健医療分野では,この種のデ ザインは,新規に合成した化学物質の毒性試験や,新薬の臨床試験で,用量反応関係を分析するた めに必須である。もちろん,ヒトを対象にした研究は,実施前に倫理審査を通らねばならず,倫理 審査に提出する書類には,適切なサンプルサイズの設定を含む,適切なデザインが記述されねばな らない。実験計画法には,目的に応じて様々なデザインがある。本稿では以下の3つについて説明 する。

なお,実習では不可能だが,実験デザインの中では,サンプルサイズの決定も非常に重要な問題 である。サンプルサイズを大きくすれば,医学生物学的な意味がない微小な差であっても,統計学 的には「ゼロでない差がある」という検定結果を出せてしまうし,逆にサンプルサイズが小さすぎ ると,本当は意味のある大きさの差があっても,検定結果は有意にならないこともありうる(そう いう状況を,専門用語では「検出力が不十分」という)。EZR では,メニューの「統計解析」>「必 要サンプルサイズの計算」から項目を選んで,先行研究などから得た事前情報を入力することで, サンプルサイズを計算することができる。動物実験などを計画する場合は,必ずこのプロセスを踏 むべきである。

- 単一群,事前-事後デザイン
- 平行群間比較試驗(完全無作為化法)
- クロスオーバーデザイン

7.2 単一群,事前-事後デザイン

このデザインを使うと、研究者は、個々の対象者に対して同じ精度で測定された、何かの処理の 前後で測定値に変化がないかどうかを評価することができる。通常使われる検定手法は、対応のあ るt検定や、ウィルコクソンの符号順位検定になる(事前や事後の測定点が2時点以上ある場合 は、反復測定分散分析やフリードマンの検定になる)。なお、対応のあるt検定は、個人ごとに算出 した変化量の平均値がゼロという帰無仮説を検定する一標本t検定と、数学的には同値である。以 下のような研究が典型的な例であるが、本実習には、これに該当するデザインの項目は含まれてい ない。

- 慢性関節リウマチ (RA) 患者の手術前後の血清コルチゾールレベルを比較することで、手術の効果を判定
- うつ病患者の音楽療法の前後で、質問紙によるうつ得点を比較することで、音楽療法の効果 を判定
- 珈琲を飲む前後で単純計算にかかる時間や正答率を比較することで、珈琲を飲むことが計算 能力や集中力に影響するかを判定

7.3 平行群間比較試験(完全無作為化法)

これは非常に単純である。研究参加に同意した対象者各人に対して,完全にランダムに(行き当たりばったりに,ではなく),いくつかの処理(曝露)の1つを割り付け,処理間での比較をするというものである。

無作為化 (randomization) の方法にはいくつかある。Fleiss JL (1986)"The design and analysis of clinical experiments" は, 乱数表 (random number table) の代わりに乱数順列表 (random permutation table) を使うことを推奨している。もっとも、今ではコンピュータソフトが使えるので、紙の表を 使わなくても、簡単にランダム割り付けができる。

結果の解析は2群間での平均値の比較ならWelchの方法によるt検定,3群以上の間での平均値の比較なら一元配置分散分析 (One-way ANOVA) になる。

本実習項目の中で,室内空気と屋外空気の間での二酸化炭素濃度の比較は,2群間の平均値の比 較なので(無作為割り付けした処理の異なる2群間ではないが,室内と屋外という注目している属 性以外のバックグラウンド要因には差がないと考えられるため),これと同じ Welch の方法による t 検定を適用する。また,5地点間で二酸化窒素濃度に差がないかどうかを分析するのは一元配置 分散分析となる。

二酸化炭素濃度の t 検定

二酸化炭素濃度データは、http://minato.sip21c.org/pubhealthpractice/airco2.csvの ような形で入力する。変数 SAMPLE はサンプルの種類を示し、BREATH が呼気、ROOM が室内 空気、OUTSIDE が屋外空気を意味する。MEASURE はそれぞれの測定が何回目かを意味する(検 知管の場合、1 回測定するごとに検知管は変わるし、測定によるサンプルへの影響もほとんど考え られないので、無くても良い変数である)。CO2 という変数が二酸化炭素濃度(ppm 単位)を示す。 Excel などでデータを入力し、「形式を選択して保存」から「テキスト(コンマ区切り)」で保存す ればできる。データを EZR に読み込むには、「ファイル」の「データのインポート」から「ファイ ルまたはクリップボード、URL からテキストデータを読み込む」を選ぶ。表示されるウィンドウ の中で、「データセット名を入力:」に対して、読み込んだデータに対してつける名前を入力し(デ フォルトは Dataset だが、例えば CO2 にする)、「データファイルの場所」が「ローカルファイル システム」になっているのを確認し、「フィールドの区切り記号」が「カンマ」になっているのを 確認して「OK」ボタンをクリックし、データが入っている CSV ファイルを選んで「OK」すると、 EZR の中に CO2 という名前を付けてデータを読み込むことができる。

まずサンプルの種類ごとの平均値と標準偏差を計算させるため、「グラフと表」の「サンプルの 背景データのサマリー表の出力」を選ぶ。「群別する変数(0~1つ選択)」として「SAMPLE」を選 び、「連続変数(正規分布)」として「CO2」を選んで「OK」をクリックすると下表が表示される。

p.value	 1 1	ROOM	DE	OUTSI	MPLE EATH	SAI BRI	Factor
		3		3	3		n
<0.001	(50.00)	550.00	(50.00)	400.00	(2000.00)	40000.00	C02

数字は平均±標準偏差である *¹⁹。呼気が 40000 ± 2000 ppm,屋外空気が 400 ± 50 ppm,屋内 空気が 550 ± 50 ppm である。この p.value は一元配置分散分析の結果の有意確率であり、< 0.001 という値は、呼気も含めたサンプルの種類間で二酸化炭素濃度に統計学的に有意水準 5% で有意な 差があるという当たり前のことを意味しているだけなので、呼気を除いて 2 群間で t 検定をしたい。 そのためには、「統計解析」の「連続変数の解析」メニューから「2 群間の平均値の比較 (t 検定)」 を選んで表示されるウィンドウで、「目的変数」として「CO2」、「比較する群」として「SAMPLE」 を選び、「等分散と考えますか?」を「いいえ (Welch 検定)」を選んでから、下の方の「↓一部のサ ンプルだけを解析対象にする場合の条件式」の枠内に、

SAMPLE != "BREATH"

と打って「OK」ボタンをクリックする。エラーバー付きの棒グラフが表示されるのと同時に,出 力ウィンドウに,

^{*&}lt;sup>19</sup> 書くまでもないと思うが,標準偏差は,個々の値から平均を引いて二乗した値の和をとってサンプルサイズから1を 引いた自由度で割った値である不偏分散の平方根であり,母集団におけるデータのばらつきの大きさの指標である。

平均 標準偏差	P 値		
SAMPLE=OUTSIDE	400	50 0.0	0213
SAMPLE=ROOM	550	50	

と表示されて, Welch の t 検定の結果の有意確率が p=0.0213 であり,室内空気と屋外空気には統計学的な有意差があることが示された。

二酸化窒素濃度の一元配置分散分析

二酸化炭素濃度データは、http://minato.sip21c.org/pubhealthpractice/airno2.csvの ような形で入力する。PLACE はサンプリング場所,NO2 は二酸化窒素濃度を示す。1 つのサンプ リング場所について NO2 の値が3 行あるのは、triplicate したプレート上の3 つの穴の吸光度から 計算される NO₂ 濃度を、それぞれ入力するためである。通常はサンプル自体を triplicate し、さら にプレート上でも triplicate し、データとして入力するのは、サンプルごとの平均値(極端な外れ値 があればそれを除外した平均値)となるが、本実習ではプレート上でのみ triplicate するので、こ のように処理する。

データの読み込みは二酸化炭素濃度のときと同様に,「ファイル」>「データのインポート」> 「ファイルまたはクリップボード, URL からテキストデータを読み込む」を選んで,「データセッ ト名を入力:」を NO2 とし,「データファイルの場所」が「ローカルファイルシステム」,「フィー ルドの区切り記号」が「カンマ」になっているのを確認して「OK」ボタンをクリックし,データが 入っている CSV ファイルを選んで「OK」すると, EZR の中に NO2 という名前を付けてデータを 読み込むことができる。

一元配置分散分析を実行するには、「統計解析」>「連続変数の解析」>「3 群以上の間の平均値 の比較(一元配置分散分析 one-way ANOVA)」を選択し、「目的変数(1 つ選択)」は NO2 が選ば れているのでそのまま、「比較する群(1 つ以上選択)」は PLACE を選ぶ。一元配置分散分析だけ で良ければ、「等分散と考えますか?」は「いいえ(Welch 検定)」を選ぶべきだが、どの場所とど の場所で二酸化窒素濃度に差があったのかという 2 地点ずつの対比較を繰り返すためには、Holm や Tukey などの方法で検定の多重性の調整をする必要があり^{*20}、その場合は一元配置分散分析も 等分散を仮定するしかない設定になっている。

サンプルデータを「いいえ(Welch 検定)」で解析すると、出力ウィンドウに以下が表示される。

^{*20} Neyman-Pearson 流の仮説検定では、「差がない」という帰無仮説の下で、実際に得られた値より大きな差が偶然得られる確率である P 値を計算し、この P 値が一定の基準—通常は 5% にするが、有意水準と呼ばれる—より小さかったら帰無仮説が間違っていると考えるが、検定を繰り返すと、本当は差がないのに P 値が偶然に有意水準より小さくなってしまう確率が 5% よりずっと大きくなってしまうため、P 値を調整しなければならない(厳密には P 値ではなく、本当は差がないのに間違って差があると判定してしまう第一種の過誤を 5% 以内にするために有意水準を調整するのだが、有意水準を 3 分の 1 にすることと P 値を 3 倍にすることは表裏一体なので、大抵の統計ソフトは P 値を調整した結果を表示することになっており、有意水準は最初に設定したまま有意性を判定すれば良い)。調整の方法がいろいろあり、Holm の方法や FDR 法が良く使われる。平均値の比較の場合に限っては、古典的に良く使われてきた Tukey の HSD 法がいまでも使われている。

平均 標準	偏差	P 値	
PLACE=A	3.333333	1.154701	0.00923
PLACE=B	4.333333	1.527525	
PLACE=C	5.000000	1.000000	
PLACE=D	3.000000	1.000000	
PLACE=E	9.000000	1.000000	

P 値の 0.00923 は 0.05 より小さいので,有意水準 5% で Welch の方法による一元配置分散分 析を実行した結果,場所の違いが二酸化窒素濃度に統計学的に有意に影響していると結論すること ができる。ちなみに等分散性の仮定について「はい」を選んで,Tukeyの多重比較のオプションを チェックしてから実行すると,出力ウィンドウに以下が表示される。p adj は Tukeyの方法で検 定の多重性を調整したあとの P 値であり,この結果で p adj が 0.05 より小さいのは,E-A, E-B, E-C, E-D だけなので,E 地点の二酸化窒素濃度は他のどの地点よりも有意に高く,その他の地点 間では統計学的に有意な差は認められなかったといえる(ただし,サンプルサイズが小さいので検 出力が大きくないため,E以外の地点間の差についてはあるともないとも言えないと考えるべきで ある)。

diff	lw	r upr	p adj	
B-A	1.0000000	-2.1028621	4.102862	0.8219440
C-A	1.6666667	-1.4361954	4.769529	0.4400298
D-A	-0.3333333	-3.4361954	2.769529	0.9960810
E-A	5.6666667	2.5638046	8.769529	0.0009542
C-B	0.6666667	-2.4361954	3.769529	0.9501740
D-B	-1.3333333	-4.4361954	1.769529	0.6330823
E-B	4.6666667	1.5638046	7.769529	0.0040788
D-C	-2.0000000	-5.1028621	1.102862	0.2829865
E-C	4.0000000	0.8971379	7.102862	0.0115580
E-D	6.0000000	2.8971379	9.102862	0.0006061

※水の測定における電気伝導度や pH の分析も、これと同様(ただし検水が3種類)に実行する こと。

7.4 クロスオーバー法 (cross-over design)

クロスオーバー法では、それぞれの対象者が2種類の処理を受ける。このとき、適当な間隔 (ウォッシュアウト期間と呼ぶ。前の処理の影響のキャリーオーバーを避けるために設ける)をお くことと、処理の順番が違う2つのグループを設定することが必要である。

Hilman BC et al. "Intracutaneous immune serum globulin therapy in allergic children.", JAMA. 1969; 207(5): 902-906. を例として説明しよう。

この研究では,同意が得られた 574 人から,まず研究目的に対して不適格な 43 人を除外し,531 人をランダムに 2 群に分けた。グループ 1 が 266 人,グループ 2 が 265 人となった。グループ 1

に処理 A を行い,34 人が脱落した。同時にグループ2には処理 B を行い,脱落が15 人であった。 その後,2ヶ月のウォッシュアウト期間をおき,グループ2の250人に処理 A を,グループ1の 232人に処理 B を行ったところ,それぞれ45人,29人が脱落したので,2回の処理を完了したの は合計408人となった。

本実習の産業衛生の実験では、クロスオーバー法で作業環境がストレス増加に与える影響を評価 した。このデザインは少々複雑である。処理の順番が結果に影響しなければクロスオーバーにしな くても良いのだが、今回の実験デザインでは、作業前後での唾液アミラーゼ濃度増加が、作業環 境の照度によって影響を受けないかどうか、照度条件が、先に明条件、後に暗条件か、その逆か という順番による影響がないかどうか、それらの交互作用がないかどうかをすべて調べる必要が ある。仮に下表のようなデータが得られたとする(分析用のデータは、このような形式で表計算 ソフトに入力する(http://minato.sip21c.org/pubhealthpractice/crossovertest.csv)。 変数 PID は被験者の識別番号を意味する。変数 Ord.LD は照度条件の順番を意味し、LD が先に明 条件の群、DL が先に暗条件の群である。変数 LD は照度条件を意味し、L が明条件、D が暗条件 である。変数 TOA と T1A は作業前後の唾液アミラーゼ値を意味する)。

PID	Ord.LD	LD	T0A	T1A
1	LD	L	15	21
2	LD	L	17	19
3	LD	L	19	25
4	LD	L	21	23
5	LD	L	23	27
6	DL	D	15	34
7	DL	D	17	27
8	DL	D	19	39
9	DL	D	21	28
10	DL	D	23	41
1	LD	D	15	35
2	LD	D	17	28
3	LD	D	19	40
4	LD	D	21	29
5	LD	D	23	42
6	DL	L	15	22
7	DL	L	17	20
8	DL	L	19	26
9	DL	L	21	24
10	DL	L	23	28

分析には(他のやり方もあるが,ここでは最も簡単な方法のみ示す),「ファイル」の「データの

インポート」メニューからこのデータを読み込ませた後,「統計解析」の「連続変数の解析」から 「対応のある2群以上の間の平均値の比較(反復測定分散分析)」を選んで,「反復測定したデータを 示す変数(2つ以上選択)」の枠から TOA と T1A を選び,「群別する変数を選択(0~複数選択可)」 の下の枠から LD と Ord.LD を選んでから OK をクリックする。結果は下の枠内のように得られる (2つのグラフが自動的に描画される)。

Univariate Type III Repeated-Me	easures A	NOVA As	ssuming Sp	pherici	ty		,
	SS	num Df	Error SS	den Df	F	Pr(>F)	
(Intercept)	22944.1	1	402.8	16	911.3843	1.554e-15	***
Factor1.LD	291.6	1	402.8	16	11.5829	0.003634	**
Factor2.Ord.LD	0.0	1	402.8	16	0.0000	1.000000	
Factor1.LD:Factor2.Ord.LD	2.5	1	402.8	16	0.0993	0.756738	
Time	980.1	1	154.8	16	101.3023	2.510e-08	***
Factor1.LD:Time	291.6	1	154.8	16	30.1395	4.942e-05	***
Factor2.Ord.LD:Time	0.0	1	154.8	16	0.0000	1.000000	
Factor1.LD:Factor2.Ord.LD:Time	2.5	1	154.8	16	0.2584	0.618160	
Signif. codes: 0 '***' 0.001	'**' 0.01	'*' 0.	.05 '.' 0	.1 ''	1		,

右端の Pr(>F) という列をみると, Factor1.LD の行が 5% より小さいので明条件と暗条件では アミラーゼ値が有意に異なり, Time の行も 5% より小さいので作業前後でアミラーゼ値が有意に 異なり, Factor1.LD:Time の行も 5% より小さいので作業条件と時間の交互作用効果が有意であ る(即ち,明条件か暗条件かで,作業前後でのアミラーゼ値の変化の仕方が有意に異なる)ことが わかる。この結果では, Factor2.Ord.LD や, それを含む行は Pr(>F) が大きい値なので, クロス オーバーデザインにはしたけれども, 明暗条件の順序は結果に影響しなかったといえる。

なお,群別がない場合は,球面性検定の結果が表示され,その結果が統計学的に有意だった場合 に用いられる2種類の補正の結果も表示されるが,このように群別変数を指定して交互作用効果を 見る場合は計算されない。

24

- コラム:測定の正確さ・精度・妥当性 -

測定の正しさを考えるとき,少なくとも3種類の異なる正しさが存在することに注意したい。Validity (妥当性), Accurary (正しさ・正確性), Precision (精度)の3つである。

- Validity(妥当性) 測りたいものを正しく測れていること。例えば, ELISA で抗体の特異性が低いと, 測定対象でないものまで測ってしまうことになるので,測定の妥当性が低くなる。途上国で子供 の体重を調べる研究において,靴を履いた子供がいてもそのまま体重計に載せて,表示された値 を使ったという研究があったが,そういうときの靴は往々にしてブーツなので1kg 近くの重さ がある場合もあり,表示値そのままでは体重が正しく測れていない。
- Accuracy(正確さ) バイアス(系統誤差)が小さいこと。モノサシの原点が狂っていると(目盛幅が 狂っているときも),正しさが損なわれる。例えば,何も載っていない状態で1kgと表示されて いる体重計で体重を測定すると,真の体重が60kgの人が載ったときの表示は61kgとなるだろ う。すべての人の体重が1kg重く表示されたら,正しいデータは得られない。
- Precision(精度) 確率的な誤差(ランダムな誤差)が小さいこと。信頼区間が狭いことや CV(変動 係数)が小さいことも、精度の高さに相当する。測定値の有効数字の桁数も精度を示す値である。 例えば、手の大きさを測るのに、通常のものさし(最小表示目盛が1mm)で測るのと、ノギス (最小表示目盛 0.1 mm)で測るのでは、最小目盛の 1/10 まで読むとしても、精度が1 桁異なる。 CV は、本来的には同じ値になるはずの複数の測定値の標準偏差(不偏標準偏差ではない)を平 均値で割った値を百分率表示で示した値だが、CV が小さい測定は精度が高いといえる。

正確さと精度について,もう少し丁寧に考えてみよう。筆者が学生の頃に所属していたラボでは,ピペッ ティングが正しくできていることを保証するために,純水を1mlマイクロピペットで吸って,その重さ を電子天秤(校正済みで十分信頼できるとする)で量る操作を5回とか10回繰り返すことが行われてい た。熟練した実験者であれば,5回ともほぼ1グラムになるだろう。仮に5回の測定値が,0.998,0.997, 1.001,1.002,1.000グラムだったとすると,平均値は0.9996グラムである。CVをRで計算すると,以 下のように0.2%未満であり,この実験者のピペッティングの精度は十分に高いといえる(当時,1%未 満であることが1つの基準であった)。

> x <- c(0.998, 0.997, 1.001, 1.002, 1.000)
> mx <- mean(x)
> sqrt(sum((x-mx)^2)/5)/mx*100
[1] 0.1855466

正確さの方は, 真値から系統的にずれていないことが大事なので, 例えば, この5つの測定値について, 母平均が1という帰無仮説を1標本t検定するとよい。Rでは, t.test(x, mu=1)で結果が得られ, p=0.6885 なので, 統計的に有意な差があるとはいえず, この実験者のピペッティングは正確さも高い といえる。

実験を始めたばかりの学部生がピペッティングをすると、量るたびに全然違う値になったり、似たよう な値だけれども常に少ないといったことが珍しくなかった。例えば、0.950、0.954、0.952、0.955、0.953 グ ラムという測定値を出した学生は、CV は先の実験者と同じく 0.2% 未満であり、精度は高い。けれど も、母平均が1という帰無仮説について1標本t検定をすると、p=6.605e-07と、100万分の1より も小さなp値が得られ、真値よりも統計的に有意に低い測定値が得られてしまっていることがわかり、 この学生のピペッティングは、精度は高いけれども正確さが低いと言える。逆に、1.100、0.950、0.910、 1.150、1.005という結果を出した学生は、CV が 8.8% なので精度は低いが、母平均を1とする1標本t 検定のp値は 0.6361となるので平均値と真値の統計的な有意差はなく、正確さは低いとはいえない。こ の場合、どちらの学生のピペッティングも信用できない。精度と正確さの両方が十分な水準に到達する まで、ピペッティングを訓練する必要がある。

7.5 データ入力

研究によって得られたデータをコンピュータを使って統計的に分析するためには,まず,コン ピュータにデータを入力する必要がある。データの規模や利用するソフトウェアによって,どうい う入力方法が適当か(正しく入力でき,かつ効率が良いか)は異なってくる。

ごく小さな規模のデータについて単純な分析だけ行う場合,電卓で計算してもよいし,分析する 手続きの中で直接数値を入れてしまってもよい。例えば,60 kg,66 kg,75 kg という3人の平均体 重を R を使って求めるには,プロンプトに対して mean(c(60,66,75)) または (60+66+75)/3 と 打てばいい。

しかし実際にはもっとサイズの大きなデータについて、いろいろな分析を行う場合が多いので、 データ入力と分析は別々に行うのが普通である。そのためには、同じ調査を繰り返しするとか、き わめて大きなデータであるとかでなければ、Microsoft Excel のような表計算ソフトで入力するの が手軽であろう。きわめて単純な例として、10人の対象者についての身長と体重のデータが次の 表のように得られているとする。

対象者 ID	身長 (cm)	体重 (kg)
1	170	70
2	172	80
3	166	72
4	170	75
5	174	55
6	199	92
7	168	80
8	183	78
9	177	87
10	185	100

まずこれを Microsoft Excel などの表計算ソフトに入力する。一番上の行には変数名を入れる。 日本語対応 R なら漢字やカタカナ,ひらがなも使えるが,半角英数字(半角ピリオドも使える) にしておくのが無難である。入力が終わったら,一旦,そのソフトの標準の形式で保存しておく (Excel ならば*.xls 形式, OpenOffice.org の calc ならば*.ods 形式)。入力完了した状態は,次の画 面のようになる。

🔀 Mic	🔀 Microsoft Excel – desample.xls						
18) 7	図 ファイル(E) 編集(E) 表示(V) 挿入① 書式						
	2 🖬 🔒	🖨 🖪 💖	X 🖻 🛍 ·				
	A1	•	= PID				
	A	В	С				
1	PID	HT	WT				
2	1	170	70				
3	2	172	80				
4	3	166	72				
5	4	170	75				
6	5	174	55				
7	6	199	92				
8	7	168	80				
9	8	183	78				
10	9	177	87				
11	10	185	100				

次に、この表をタブ区切りテキスト形式で保存する。Microsoft Excel の場合、メニューバーの 「ファイル(F)」から「名前を付けて保存」を選び、現れるウィンドウの一番下の「ファイルの種類 (T)」のプルダウンメニューから「テキスト(タブ区切り)(*.txt)」を選ぶと、自動的にその上の行 のファイル名の拡張子も xls から txt に変わるので、「保存(S)」ボタンを押せば OK である(下の スクリーンショットを参照)。複数のシートを含むブックの保存をサポートした形式でないとかい う警告が表示されるが無視して「はい」を選んでよい。その直後に Excel を終了しようとすると、 何も変更していないのに「保存しますか」と聞く警告ウィンドウが現れるが、既に保存してあるの で「いいえ」と答えてよい(「はい」を選んでも同じ内容が上書きされるだけであり問題はない)。 この例では、desample.txt ができる。

R コンソールを使って,このデータを Dataset という名前のデータフレームに読み込むのは簡単で,次の1行を入力するだけでいい(ただしテキストファイルが保存されているディレクトリが 作業ディレクトリになっていなくてはいけない)。

Dataset <- read.delim("desample.txt")</pre>

EZR では「ファイル」「データのインポート」の「ファイルまたはクリップボード, URL から テキストデータを読み込む」を開き,「データセット名を入力:」の欄に適当な参照名をつけ (変数名として使える文字列なら何でもよいのだが,デフォルトでは Dataset となっている), 「フィールドの区切り記号」を「空白」から「タブ」に変えて(「タブ」の右にある〇をクリッ クすればよい), OK ボタンをクリックしてからデータファイルを選べばよい。 なお,データをファイル保存せず, Excel 上で範囲を選択して「コピー」した直後であれば,

「データのインポート」の「テキストファイル又はクリップボードから」を開いてデータセット名を付けた後,「クリップボードからデータを読み込む」の右のチェックボックスにチェックを入れておけば,(データファイルを選ばずに)OK ボタンを押しただけでデータが読み込める。

「ファイル」「データのインポート」の「Excel, Access, dBase のデータをインポート」を開き,「データセット名を入力:」の欄に適当な参照名をつけ, Excel ファイルを開くとシート を選ぶウィンドウが出てくるので,データが入っているシートを選べば, Excel のファイルも 読み込める。

7.6 データの図示

データの大局的性質を把握するには、図示をするのが便利である。人間の視覚的認識能力は、パ ターン認識に関してはコンピュータより遥かに優れていると言われているから、それを生かさない 手はない。また、入力ミスをチェックする上でも有効である。つまり、データ入力が終わったら、 何よりも先に図示をすべきといえる。

変数が表す尺度の種類によって,さまざまな図示の方法がある。離散変数の場合は,度数分布 図,積み上げ棒グラフ,帯グラフ,円グラフが代表的である。

survey というデータを使って例示する。EZR では「ツール」の「パッケージの読み込み」から MASS を選んで OK し,「ファイル」「パッケージに含まれるデータを読み込む」から,パッ ケージとして MASS をダブルクリックし,データセットとして survey をダブルクリックして から「OK」ボタンをクリックする。

"survey"というデータは、アデレード大学の学生 237 人の調査結果であり、含まれている変数は、 Sex(性別:要因型)、Wr.Hnd(字を書く利き手の親指と小指の間隔, cm単位:数値型)、NW.Hnd (利き手でない方の親指と小指の間隔, cm単位:数値型)、W.Hnd(利き手:要因型)、Fold(腕を 組んだときにどちらが上になるか?:右が上,左が上,どちらでもない、の3水準からなる要因 型)、Pulse(心拍数/分:整数型)、Clap(両手を叩き合わせた時,どちらが上にくるか?:右, 左,どちらでもない、の3水準からなる要因型)、Exer(運動頻度:頻繁に、時々、しない、の3水 準からなる要因型)、Smoke(喫煙習慣:ヘビースモーカー、定期的に吸う、時々吸う、決して吸わ ない、の4水準からなる要因型)、Height(身長:cm単位の数値型)、M.I(身長の回答がインペ リアル (フィート/インチ) でなされたか,メトリック (cm / m) でなされたかを示す要因型), Age (年齢:年単位の数値型) である。

このデータフレームを使って、いくつかのグラフを描いてみよう。

カテゴリ変数の場合

度数分布図 値ごとの頻度を縦棒として,異なる値ごとに,この縦棒を横に並べた図である。離散 変数の名前を X とすれば, R では barplot(table(X)) で描画される。

EZR では「グラフ」>「棒グラフ(頻度)」を選び,変数として Smoke を選ぶと,喫煙 習慣ごとの人数がプロットされる。

積み上げ棒グラフ 値ごとの頻度の縦棒を積み上げた図である。R では

```
fx <- table(X)</pre>
```

barplot(matrix(fx,NROW(fx)),beside=F)

で描画される。Rcmdrや EZR では描けない。

帯グラフ 横棒を全体を 100% として各値の割合にしたがって区切って塗り分けた図である。R では

px <- table(X)/NROW(X)</pre>

barplot(matrix(pc,NROW(pc)),horiz=T,beside=F)

で描画される。これも Rcmdr や EZR では描けない。

7.7 連続変数の場合

ヒストグラム 変数値を適当に区切って度数分布を求め、分布の様子を見るものである。R では hist() 関数を用いる。デフォルトでは「適当な」区切り方として"Sturges"というアルゴ リズムが使われるが、明示的に区切りを与えることもできる。また、デフォルトでは区間が 「~を超えて~以下」であり、日本で普通に用いられる「~以上~未満」ではないことにも注 意されたい。「~以上~未満」にしたいときは、right=FALSE というオプションを付ければ 良い。R コンソールで年齢 (Age) のヒストグラムを描かせるには、hist(survey\$Age) だ が、「10 歳以上 20 歳未満」から 10 歳ごとの区切りでヒストグラムを描くように指定するに は、hist(survey\$Age, breaks=1:8*10, right=FALSE) とする。 Rcmdr や EZR では「グラフ」の「ヒストグラム」を選ぶ。survey データでは, 変数と して Age を選べば, 年齢のヒストグラムが描ける (アデレード大学の学生のデータのは ずだが, 70 歳以上の人や 16.75 歳など, 大学生らしくない年齢の人も含まれている)。 Rcmdr や EZR では「〜以上〜未満」にはできない(裏技的には, 予め「〜以上〜未 満」のカテゴリデータに変換しておき,「棒グラフ(頻度)」で描画することはできる)。

正規確率プロット 連続変数が正規分布しているかどうかを見るものである(正規分布に当ては まっていれば点が直線上に並ぶ)。R では qqnorm() 関数を用いる。例えば, survey データ フレームの心拍数 (Pulse) について正規確率プロットを描くには, qqnorm(survey\$Pulse) とする。

EZR では QQ プロットはできないが、「統計解析」「連続変数の解析」「正規性の検定 (Kolmogorov-Smirnov 検定)」で検定と同時にヒストグラムに正規分布の曲線を重ね描 きしてくれるので,正規分布と見なせるかどうかは見当がつく。

幹葉表示 (stem and leaf plot) 大体の概数(整数区切りとか5の倍数とか10の倍数にすることが 多い)を縦に並べて幹とし、それぞれの概数に相当する値の細かい部分を葉として横に並べ て作成する図。R では stem() 関数を用いる。同じデータで心拍数の幹葉表示をするには、 stem(survey\$Pulse)とする。

EZR では「グラフ」「幹葉表示」を選び,「変数(1つ選択)」の枠内から Pulse を選ん で「OK」ボタンをクリックすれば Output ウィンドウにテキスト出力される。さまざ まなオプションが指定可能である。

箱ヒゲ図 (box and whisker plot) 縦軸に変数値をとって、第1四分位を下に、第3四分位を上にした箱を書き、中央値の位置にも線を引いて、さらに第1四分位と第3四分位の差(四分位範囲)を1.5 倍した線分をヒゲとして第1四分位の下と第3四分位の上に伸ばし、ヒゲの先より外れた値を外れ値として〇をプロットした図である。カテゴリによって層別した箱ヒゲ図を横に並べて描くと、大体の分布の様子と外れ値の様子が同時に比較できるので便利である。R では boxplot() 関数を用いる。例えば、survey データで喫煙状況 (Smoke) 別に心拍数(Pulse)の箱ヒゲ図を描くには、boxplot(survey\$Pulse ~ survey\$Smoke)とする。

EZR では「グラフ」の「箱ひげ図」を選ぶ。survey データで喫煙状況別に心拍数の箱 ひげ図を描かせるには,「群別する変数(0~1 つ選択)で Smoke を選び,上下のひげ の位置として「第1四分位数-1.5x 四分位範囲、第3四分位数 +1.5x 四分位範囲」の左 のラジオボタンをチェックして「OK」をクリックするだけでよい。似た用途のグラフ として,層別の平均とエラーバーを表示して折れ線で結ぶことも「グラフ」の「棒グ ラフ(平均値)」または「折れ線グラフ(平均値)」でできる。survey データで喫煙習 慣ごとに心拍数の平均値とエラーバーを表示して折れ線で結びたいなら,「因子」とし て Smoke,「目的変数」として Pulse を選べばよい。エラーバーとしては標準誤差(デ フォルト),標準偏差,信頼区間から選択できる。

散布図 (scatter plot) 2つの連続変数の関係を2次元の平面上の点として示した図である。R で は plot() 関数を用いる。異なる群ごとに別々のプロットをしたい場合は plot() の pch オプションで塗り分けたり, points() 関数を使って重ね打ちしたりできる。点ごとに異 なる情報を示したい場合は symbols() 関数を用いることができるし,複数の連続変数間 の関係を調べるために,重ね描きしたい場合は matplot() 関数と matpoints() 関数を, 別々のグラフとして並べて同時に示したい場合は pairs() 関数を用いることができる。 データ点に文字列を付記したい場合は text() 関数が使えるし,マウスで選んだデータ点 にだけ文字列を付記したい場合は identify() 関数が使える。survey データで, R コン ソールを使って, 横軸に年齢 (Age),縦軸に身長 (Height) をとってプロットしたいときは, plot(Height ~ Age, data=survey) と打てば良い。

EZR では「グラフ」の「散布図」で描ける(「散布図行列」メニューで pairs()の機能も実装されている)。層別にマークを変えることもできる。

7.8 記述統計・分布の正規性・外れ値

記述統計は,(1) データの特徴を把握する目的,また(2) データ入力ミスの可能性をチェックする目的で計算する。あまりにも妙な最大値や最小値,大きすぎる標準偏差などが得られた場合は,入力ミスを疑って,元データに立ち返ってみるべきである。

記述統計量には,大雑把にいって,分布の位置を示す「中心傾向」と分布の広がりを示す「ばら つき」があり,中心傾向としては平均値,中央値,最頻値がよく用いられ,ばらつきとしては分散, 標準偏差,四分位範囲,四分位偏差がよく用いられる。

中心傾向の代表的なものは以下の3つである。

平均値(mean) 分布の位置を示す指標として,もっとも頻繁に用いられる。実験的仮説検証の ためにデザインされた式の中でも,頻繁に用いられる。記述的な指標の1つとして,平均値 は,いくつかの利点と欠点をもっている。日常生活の中でも平均をとるという操作は普通に 行われるから説明不要かもしれないが,数式で書くと以下の通りである。 母集団の平均値 µ(ミューと発音する)は,

$$\mu = \frac{\sum X}{N}$$

である。*X* はその分布における個々の値であり,*N* は値の総数である。 \sum (シグマと発音する)は,一群の値の和を求める記号である。すなわち, $\sum X = X_1 + X_2 + X_3 + ... + X_N$ である。 標本についての平均値を求める式も,母集団についての式と同一である。ただし,数式で使 う記号が若干異なっている。標本平均 \bar{X} (エックスバーと発音する)は,

$$\bar{X} = \frac{\sum X}{n}$$

である。*n*は,もちろん標本サイズである^{*21}。

ちなみに,重み付き平均は,各々の値にある重みをかけて合計したものを,重みの合計で 割った値である。式で書くと,

$$\bar{X} = \frac{n_1(\bar{X}_1) + n_2(\bar{X}_2) + \dots + n_n(\bar{X}_n)}{n_1 + n_2 + \dots + n_n}$$

- 中央値(median) 中央値は,全体の半分がその値より小さく,半分がその値より大きい,という 意味で,分布の中央である。言い換えると,中央値は,頻度あるいは値の数に基づいて分布 を2つに等分割する値である。中央値を求めるには式は使わない(決まった手続き=アルゴ リズムとして,並べ替え(sorting)は必要)。極端な外れ値の影響を受けにくい(言い換える と,外れ値に対して頑健である)。歪んだ分布に対する最も重要な central tendency の指標が 中央値である。R で中央値を計算するには, median()という関数を使う。なお,データが 偶数個の場合は,普通は中央にもっとも近い2つの値を平均した値を中央値として使うこと になっている。
- 最頻値(Mode) 最頻値はもっとも度数が多い値である。すべての値の出現頻度が等しい場合は、
 最頻値は存在しない。R では table(X) [which.max(table(X))] で得られる(ただし、複数の最頻値がある場合は、これだと最も小さい値しか表示されないので要注意)。

平均値は,(1)分布のすべての値を考慮した値である,(2)同じ母集団からサンプリングを繰り返 した場合に一定の値となる,(3)多くの統計量や検定で使われている,という特長をもつ。標本調 査値から母集団の因果関係を推論したい場合に,もっとも普通に使われる。しかし,(1)極端な外 れ値の影響を受けやすい,(2)打ち切りのある分布では代表性を失う場合がある*²²,という欠点が

^{*&}lt;sup>21</sup> 記号について注記しておくと,集合論では \bar{X} は集合Xの補集合の意味で使われるが,代数では確率変数Xの標本平 均が \bar{X} で表されるということである。同じような記号が別の意味で使われるので混乱しないように注意されたい。 補集合は X^{C} という表記がなされる場合も多いようである。標本平均は \bar{X} と表すのが普通である。

^{*22} 氷水で痛みがとれるまでにかかる時間とか、年収とか。無限に観察を続けるわけにはいかないし、年収は下限がゼロ で上限はビル・ゲイツのそれのように極端に高い値があるから右すそを長く引いた分布になる。平均年収を出してい る統計表を見るときは注意が必要である。年収の平均的な水準は中央値で表示されるべきである。

あり,外れ値があったり打ち切りがあったりする分布では位置の指標として中央値の方が優れてい る。最頻値は,標本をとったときの偶然性の影響を受けやすいし,もっとも頻度が高い値以外の情 報はまったく使われない。しかし,試験の点で何点の人が多かったかを見たい場合は最頻値が役に 立つし,名義尺度については最頻値しか使えない。

ここで上げた3つの他に,幾何平均 (geometric mean) や調和平均 (harmonic mean) も,分布の位置の指標として使われることがある。幾何平均はデータの積の累乗根(対数をとって平均値を出して元に戻したもの),調和平均はデータの逆数の平均値の逆数であり,どちらもゼロを含むデータには使えない。大きな外れ値の影響を受けにくいという利点があり,幾何平均は,とくにデータの分布が対数正規分布に近い場合によく用いられる。

一方、分布のばらつき(Variability)の指標として代表的なものは、以下の4つである。

- 四分位範囲 (Inter-Quartile Range; IQR) 四分位範囲について説明する前に,分位数について説明 する。値を小さい方から順番に並べ替えて,4つの等しい数の群に分けたときの1/4,2/4, 3/4 にあたる値を,四分位数 (quartile)という。1/4 の点が第1四分位,3/4 の点が第3四分位 である(つまり全体の25%の値が第1四分位より小さく,全体の75%の値が第3四分位よ り小さい)。2/4 の点というのは,ちょうど順番が真中ということだから,第2四分位は中央 値に等しい。ちょっと考えればわかるように,ちょうど4等分などできない場合がもちろん あって,上から数えた場合と下から数えた場合で四分位数がずれる可能性があるが,その場 合はそれらを平均するのが普通である。また,最小値,最大値に,第1四分位,第3四分位 と中央値を加えた5つの値を五数要約値と呼ぶことがある(Rではfivenum()関数で五数 要約値を求めることができる)。第1四分位,第2四分位,第3四分位は,それぞれQ1,Q2, Q3と略記することがある。四分位範囲とは,第3四分位と第1四分位の間隔である。上と 下の極端な値を排除して,全体の中央付近の50%(つまり代表性が高いと考えられる半数) が含まれる範囲を示すことができる。
- 四分位偏差 (Semi Inter-Quartile Range; SIQR) 四分位範囲を2で割った値を四分位偏差と呼ぶ。 もし分布が左右対称型の正規分布であれば,中央値マイナス四分位偏差から中央値プラス四 分位偏差までの幅に全データの半分が含まれるという意味で,四分位偏差は重要な指標であ る。IQR も SIQR も少数の極端な外れ値の影響を受けにくいし,分布が歪んでいても使える 指標である。
- 分散 (variance) データの個々の値と平均値との差を偏差というが、マイナス側の偏差とプラス側 の偏差を同等に扱うために、偏差を二乗して、その平均をとると、分散という値になる。分 散 V は、

$$V = \frac{\sum (X - \mu)^2}{N}$$

で定義される*²³。標本数 n で割る代わりに自由度 n-1 で割って,不偏分散 (unbiased variance) という値にすると,標本データから母集団の分散を推定するのに使える。即ち,不

^{*23} 実際に計算するときは2乗の平均から平均の2乗を引くとよい。

偏分散 V_{ub} は,

$$V_{ub} = \frac{\sum (X - \bar{X})^2}{n - 1}$$

である(Rでは var()で得られる)。

標準偏差 (standard deviation) 分散の平方根をとったものが標準偏差である。平均値と次元を揃 える意味をもつ。不偏分散の平方根をとったものは,不偏標準偏差と呼ばれる (R では sd() で得られる)*²⁴。もし分布が正規分布ならば, Mean±2SD*²⁵の範囲にデータの 95% が含ま れるという意味で,標準偏差は便利な指標である。なお,名前は似ているが,「標準誤差」は データのばらつきでなくて,推定値のばらつきを示す値なので混同しないように注意された い。例えば,平均値の標準誤差は,サンプルの不偏標準偏差をサンプルサイズの平方根で割 れば得られるが,意味は,「もし標本抽出を何度も繰り返して行ったとしたら,得られる標 本平均のばらつきは,一定の確率で標準誤差の範囲におさまる」ということである。

上記の記述統計量を計算するには, EZR では,「統計解析」の「連続変数の解析」の「連続変数の要約」を選べばよい(新しいバージョンでは「グラフと表」の「サンプルの背景データのサマリー表の出力」の方が便利かもしれない)。

分布の正規性の検定は、EZR では、「統計解析」の「連続変数の解析」の「正規性の検定」を選 び、変数として wbc を選んで OK ボタンをクリックするだけでできる。自動的にコルモゴロフ= スミルノフ検定とシャピロ=ウィルク検定の結果が表示される。この例では結果が異なるが、これ らの検定は分布の正規性へのアプローチが異なるので、結果が一致しないこともある。多くの検定 手法がデータの分布の正規性を仮定しているが、この検定で正規性が棄却されたからといって機械 的に変数変換やノンパラメトリック検定でなくてはいけないとは限らない。独立 2 標本の平均値の 差がないという仮説を検定するための t 検定は、かなり頑健な手法なので、正規分布に従っている といえなくても、そのまま実行してもいい場合も多い。

外れ値の検定は, EZR では、「統計解析」の「連続変数の解析」の「外れ値の検定」を選んで、 変数として wbc を指定して OK ボタンをクリックするだけでいい。外れ値を NA で置き換えた新 しい変数を作成することも右のオプション指定から容易にできる。しかし、既に書いた通り、この 結果だけで機械的に外れ値を除外することはお薦めできない。また、この例では "No outliers were identified." と表示されるので、統計学的に外れ値があるとはいえない。

^{*&}lt;sup>24</sup> 不偏分散は母分散の不偏推定量だが,不偏標準偏差は不偏分散の平方根なので分散の平方根と区別する意味で不偏標 準偏差と呼ばれるだけであって,一般に母標準偏差の不偏推定量ではない。

^{*&}lt;sup>25</sup> 普通このように 2SD と書かれるが,正規分布の 97.5 パーセント点は 1.959964... なので,この 2 は,だいたい 2 くらいという意味である。

7.9 独立2標本の差の検定

既に室内空気と屋外空気の二酸化炭素濃度の差の検定の例を示したが,独立2群間の統計的仮説 検定の方法は,以下のようにまとめられる。

- 量的変数の場合
 - (a) 正規分布に近い場合(shapiro.test() で Shapiro-Wilk の検定ができるが、その結果
 を機械的に適用して判断すべきではない): Welch の検定(R では t.test(x,y))^{*26}
 - (b) 正規分布とかけ離れている場合: Wilcoxon の順位和検定(R では wilcox.test(x,y))
- 2. カテゴリ変数の場合:母比率の差の検定(Rでは prop.test())。ただし実は,群別変数と カテゴリ変数が独立かどうかという検定と同等なので,フィッシャーの直接確率検定(Rで は fisher.test())でも分析できる。

等分散性についての F 検定

まず,標本調査によって得られた独立した2つの量的変数 $X \ge Y$ (サンプルサイズが各々 $n_X \ge n_Y$ とする)について,平均値に差があるかどうかを検定することを考える。

2つの量的変数 X と Y の不偏分散 SX<-var(X) と SY<-var(Y) の大きい方を小さい方で(以下 の説明では SX>SY だったとする)割った F0<-SX/SY が第1自由度 DFX<-length(X)-1,第2自由 度 DFY<-length(Y)-1の F 分布に従うことを使って検定する。有意確率は 1-pf(F0,DFX,DFY) で得られる。しかし,F0 を手計算しなくても,var.test(X,Y) で等分散かどうかの検定が実行で きる。また,1つの量的変数 X と1つの群分け変数 C があって,C の2 群間で X の分散が等しいか どうか検定するというスタイルでデータを入力してある場合は,var.test(X~C) とすればよい。

EZR では、「統計解析」の「連続変数の解析」から「2 群の等分散性の検定(F 検定)」を選び、 目的変数(1つ選択)の枠から X を、グループ(1つ選択)の枠から C を選び(EZR では要 因型にしなくても選べる)、OK ボタンをクリックする。survey データで、「男女間で身長の 分散に差がない」という帰無仮説を検定するには、目的変数として Height を、グループとし て Sex を選び、OK ボタンをクリックすると、男女それぞれの分散と検定結果が Output ウィ ンドウに表示される。

Welch の方法による *t* 検定

 $t_0 = |E(X) - E(Y)| / \sqrt{S_X/n_X + S_Y/n_Y}$ が自由度 ϕ のt分布に従うことを使って検定する。但し、 ϕ

^{*26} それに先立って2群の間で分散に差がないという帰無仮説で F 検定し、あまりに分散が違いすぎる場合は、平均値の差の検定をするまでもなく、2群が異なる母集団からのサンプルと考えられるので、平均値の差の検定には意味がないとする考え方もある。また、かつては、まず F 検定して2 群間で分散に差がないときは通常の t 検定、差があれば Welchの検定、と使い分けるべきという考え方が主流だったが、群馬大学社会情報学部青木繁伸教授や三重大学 奥村晴彦教授のシミュレーション結果により、F 検定の結果によらず、平均値の差の検定をしたいときは常に Welchの検定をすればよいことがわかっている。

は下式による。

$$\phi = \frac{(S_X/n_X + S_Y/n_Y)^2}{\{(S_X/n_X)^2/(n_X - 1) + (S_Y/n_Y)^2/(n_Y - 1)\}}$$

R では, t.test(X,Y,var.equal=F) だが, var.equal の指定を省略した時は等分散でないと 仮定して Welch の検定がなされるので省略して t.test(X,Y) でいい。量的変数 X と群分け変数 C という入力の仕方の場合は, t.test(X~C) とする。survey データで「男女間で平均身長に差がな い」という帰無仮説を検定したいときは, t.test(Height ~ Sex, data=survey) とする。

EZR の場合は「統計解析」「連続変数の解析」から「2 群間の平均値の比較(t 検定)」を選び, 目的変数として Height を,比較する群として Sex を選び,「等分散と考えますか?」の下の ラジオボタンを「No (Welch test)」の方をチェックして,「OK」ボタンをクリックすると,結 果が Output ウィンドウに表示される。男女それぞれの平均,不偏標準偏差と検定結果の p 値 が示され,エラーバーが上下に付いた平均値を黒丸でプロットし,それを直線で結んだグラフ も自動的に描かれる。

なお,既に平均値と不偏標準偏差が計算されている場合の図示は,エラーバー付きの棒グラフが よく使われるが(Rでは,barplot()関数で棒グラフを描画してから,arrows()関数でエラー バーを付ける),棒グラフを描く時は基線をゼロにしなくてはいけないことに注意されたい。生 データがあれば,stripchart()関数を用いて,生データのストリップチャートを描き,その脇に 平均値とエラーバーを付け足す方がよい。そのためには,量的変数と群別変数という形にしなくて はいけないので,たとえば,2つの量的変数 V <- rnorm(100,10,2) と W <- rnorm(60,12,3) があったら,予め

```
X <- c(V, W)
C <- as.factor(c(rep("V", length(V)), rep("W", length(W))))
x <- data.frame(X, C)</pre>
```

または

x <- stack(list(V=V, W=W))
names(x) <- c("X", "C")</pre>

のように変換しておく必要がある*27。プロットするには次のように入力すればよい*28。

^{*&}lt;sup>27</sup> この操作は, EZR でも「アクティブデータセット」の「変数の操作」から「複数の変数を縦に積み重ねたデータセットを作成する」を選べば簡単に実行できる。

^{*&}lt;sup>28</sup> EZR では「グラフ」「ドットチャート」でプロットする変数として X, 群分け変数として C を選ぶことで, 生データ については jitter ではないが似たグラフを描くことができる。また, 平均値とエラーバーを線で結んだグラフは「グ ラフ」「折れ線グラフ(平均値)」で描くことができる。ただし, 両者を重ね合わせることは, 2013 年 8 月時点の EZR のメニューからはできない。

```
stripchart(X~C, data=x, method="jitter", vert=TRUE)
Mx <- tapply(x$X, x$C, mean)
Sx <- tapply(x$X, x$C, sd)
Ix <- c(1.1, 2.1)
points(Ix, Mx, pch=18, cex=2)
arrows(Ix, Mx-Sx, Ix, Mx+Sx, angle=90, code=3)</pre>
```

対応のある2標本の平均値の差の検定

各対象について2つずつの値があるときは、それらを独立2標本とみなすよりも、対応のある2 標本とみなす方が切れ味がよい。全体の平均に差があるかないかだけをみるのではなく、個人ごと の違いを見るほうが情報量が失われないのは当然である。

対応のある2標本の差の検定は, paired-*t* 検定と呼ばれ, 意味合いとしてはペア間の値の差を 計算して値の差の母平均が0であるかどうかを調べることになる。R で対応のある変数 X と Y の paired-*t* 検定をするには, t.test(X,Y,paired=T) で実行できるし, それは t.test(X-Y,mu=0) と等価である。

survey データで「親指と小指の間隔が利き手とそうでない手の間で差がない」という帰無仮説を 検定するには, R コンソールでは, t.test(survey\$Wr.Hnd, survey\$NW.Hnd, paired=TRUE) と打てばよい。グラフは通常,同じ人のデータは線で結ぶので,例えば次のように打てば,差が1 cm 以内の人は黒,利き手が1 cm 以上非利き手より大きい人は赤,利き手が1 cm 以上非利き手よ り小さい人は緑で,人数分の線分が描かれる。

Diff.Hnd <- survey\$Wr.Hnd - survey\$NW.Hnd C.Hnd <- ifelse(abs(Diff.Hnd)<1, 1, ifelse(Diff.Hnd>0, 2, 3)) matplot(rbind(survey\$Wr.Hnd, survey\$NW.Hnd), type="1", lty=1, col=C.Hnd, xaxt="n") axis(1, 1:2, c("Wr.Hnd", "NW.Hnd"))

EZR では「統計解析」「連続変数の解析」から「対応のある2群間の平均値の検定(paired t 検定)」を選ぶ。第1の変数として Wr.Hnd を, 第2の変数として NW.Hnd を選び, [OK] ボタ ンをクリックすると, Output ウィンドウに結果が得られる。有意水準5% で帰無仮説は棄却 され,利き手の方がそうでない手よりも親指と小指の間隔が有意に広いといえる。

Wilcoxon の順位和検定

Wilcoxon の順位和検定は、データが外れ値を含んでいる場合や正規分布から大きく外れた分布 である場合に用いられる、連続分布であるという以外にデータの分布についての仮定を置かない (ノンパラメトリックな)検定の代表的な方法である。パラメトリックな検定でいえば、t 検定を使 うような状況、つまり、独立2標本の分布の位置に差がないかどうかを調べるために用いられる。 Mann-Whitney の U 検定と(これら2つほど有名ではないが、Kendall の S 検定とも)数学的に等 価である。データがもつ情報の中で、単調変換に対して頑健なのは順位なので、これを使って検定 しようという発想であるが、本稿では詳細な原理の説明は省略する。

例として, survey データで, 身長 (Height) の分布の位置が男女間で差がないという帰無仮説 を検定してみよう。R コンソールでは簡単で, wilcox.test(Height ~ Sex, data=survey) で 良い。

EZR では「統計解析」の「ノンパラメトリック検定」から「2 群間の比較(Mann-Whitney U検定)」を選び,目的変数として Height を,比較する群として Sex を選んで「OK」ボタ ンをクリックする。検定結果が Output ウィンドウに表示されるだけでなく,箱ひげ図も同時 に描かれる。

Wilcoxon の符号付き順位検定

Wilcoxon の符号付き順位検定は,対応のある *t* 検定のノンパラメトリック版である。ここでは 説明しないが,多くの統計学の教科書に載っている。

実例だけ出しておく。survey データには、利き手の大きさ(親指と小指の先端の距離)を意味 する Wr.Hnd という変数と、利き手でない方の大きさを意味する NW.Hnd という変数が含まれてい るので、これらの分布の位置に差が無いという帰無仮説を有意水準 5% で検定してみよう。

同じ人について利き手と利き手でない方の手の両方のデータがあるので対応のある検定が可能に なる。R コンソールでは, wilcox.test(survey\$Wr.Hnd, survey\$NW.Hnd, paired=TRUE) と すればよい。

EZR では、「統計解析」「ノンパラメトリック検定」から「対応のある2群間の比較(Wilcoxon の符号付き順位和検定)」を選び、第1の変数として左側のリストからWr.Hndを選び、第2の 変数として右側のリストからNW.Hndを選んで[OK]ボタンをクリックするだけである。順位 和検定のときと同じく検定方法のオプションを指定できるが、通常はデフォルトで問題ない。

7.10 3 群以上の比較

実験計画の二酸化窒素濃度の比較の例で既に説明した通り,3群以上を比較するために,単純に 2 群間の差の検定を繰り返すことは誤りである。なぜなら,n群から2群を抽出するやりかたは nC2通りあって,1回あたりの第1種の過誤(本当は差がないのに,誤って差があると判定してし まう確率)を5%未満にしたとしても,3群以上の比較全体として「少なくとも1組の差のある群 がある」というと,全体としての第1種の過誤が5%よりずっと大きくなってしまうからである。

この問題を解消するには、多群間の比較という捉え方をやめて、群分け変数が注目している量の 変数に与える効果があるかどうかという捉え方にするのが一つの方法であり、具体的には一元配置 分散分析やクラスカル=ウォリス (Kruskal-Wallis)の検定がこれに当たる。

そうでなければ、有意水準 5% の 2 群間の検定を繰り返すことによって全体として第1種の過誤 が大きくなってしまうことが問題なので、第1種の過誤を調整することによって全体としての検定 の有意水準を5%に抑える方法もある。このやり方は「多重比較法」と呼ばれる。

一元配置分散分析

一元配置分散分析では、データのばらつき(変動)を、群間の違いという意味のはっきりしてい るばらつき(群間変動)と、各データが群ごとの平均からどれくらいばらついているか(誤差)を すべての群について合計したもの(誤差変動)に分解して、前者が後者よりもどれくらい大きいか を検討することによって、群分け変数がデータの変数に与える効果があるかどうかを調べる。

例えば,南太平洋の3つの村 X, Y, Z で健診をやって,成人男性の身長や体重を測ったとしよう。 このとき,データは例えば次のようになる(架空のものである)*²⁹。

ID 番号	村洛 (₩G)	身長 (cm)(HEIGHT)
1	Х	161.5
2	Х	167.0
(中略)		
22	Z	166.0
(中略)		
37	Y	155.5

村落によって身長に差があるかどうかを検定したいならば,HEIGHT という量的変数に対して, VG という群分け変数の効果があるかどうかを一元配置分散分析することになる。R コンソールで は以下のように入力する。

> sp <- read.delim("http://minato.sip21c.org/grad/sample2.dat")</pre>

> summary(aov(HEIGHT ~ VG, data=sp))

すると、次の枠内に示す「分散分析表」が得られる。

 Df
 Sum Sq Mean Sq F value
 Pr(>F)

 VG
 2
 422.72
 211.36
 5.7777
 0.006918 **

 Residuals
 34
 1243.80
 36.58

 -- Signif. codes:
 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

右端の*の数は有意性を示す目安だが,確率そのものに注目してみるほうがよい。Sum Sq のカ ラムは偏差平方和を意味する。VG の Sum Sq の値 422.72 は,村ごとの平均値から総平均を引いて 二乗した値を村ごとの人数で重み付けした和であり,群間変動または級間変動と呼ばれ,VG 間で のばらつきの程度を意味する。Residuals の Sum Sq の値 1243.80 は各個人の身長からその個人 が属する村の平均身長を引いて二乗したものの総和であり,誤差変動と呼ばれ,村によらない(そ れ以外の要因がないとすれば偶然の)ばらつきの程度を意味する。Mean Sq は平均平方和と呼ば れ,偏差平方和を自由度 (Df) で割ったものである。平均平方和は分散なので,VG の Mean Sq の値

^{*&}lt;sup>29</sup> http://minato.sip21c.org/grad/sample2.dat として公開してあり, R から read.delim() 関数で読み込み可能 な筈である。

211.36 は群間分散または級間分散と呼ばれることがあり, Residuals の Mean Sq の値 36.58 は誤 差分散と呼ばれることがある。F value は分散比と呼ばれ, 群間分散の誤差分散に対する比であ る。この場合の分散比は第1自由度2, 第2自由度34のF分布に従うことがわかっているので, それを使った検定の結果,分散比がこの実現値よりも偶然大きくなる確率(Pr(>F)に得られる) が得られる。この例では0.006918 なので,VGの効果は5%水準で有意であり,帰無仮説は棄却さ れる。つまり,身長は村落によって有意に異なることになる。

EZR で sample2.dat を sp というデータフレームに読み込むには, [ファイル]の [データの インポート] から [テキストファイル, クリップボードまたは URL から] と進んで, [データ フレーム名を入力:] のところに sp と打ち, [インターネット URL] の右側のラジオボタンを チェックし, フィールド区切りを [タブ] として [OK] をクリックして表示されるダイアログ に http://minato.sip21c.org/grad/sample2.dat と入力して [OK] する。

ANOVA を実行するには, [統計解析] の [連続変数の解析] で [三群以上の間の平均値の比較 (一元配置分散分析 one-way ANOVA)] を選び,「目的変数」として HEIGHT を,「比較する群」 として VG を選び, [OK] をクリックすればよい。エラーバー付きの棒グラフが自動的に描か れ,アウトプットウィンドウには分散分析表に続いて,村ごとの平均値と標準偏差の一覧表が 表示される。右端の p 値は一元配置分散分析における VG の効果の検定結果を再掲したものに なっている。なお,実行前に,「等分散と考えますか?」というオプション項目について,「い いえ (Welch 検定)」の方をチェックしておくと,等分散性を仮定する通常の一元配置分散分 析でなく,Welch の拡張による一元配置分散分析の関数である oneway.test()を実行してく れる。

古典的な統計解析では,各群の母分散が等しいことを確認しないと一元配置分散分析の前 提となる仮定が満たされない。母分散が等しいという帰無仮説を検定するには,バートレッ ト (Bartlett)の検定と呼ばれる方法がある。R では,量的変数をY,群分け変数をCとすると, bartlett.test(Y~C)で実行できる(もちろん,これらがデータフレーム datに含まれる変数な らば,bartlett.test(Y~C, data=dat)とする)。この結果得られるp値は0.5785 なので,母分 散が等しいという帰無仮説は有意水準5%で棄却されない。これを確認できると,安心して一元配 置分散分析が実行できる。

EZR では、メニューバーの「統計解析」から「連続変数の解析」の「三群以上の等分散性の 検定 (Bartlett 検定)」を選び、「目的変数」として HEIGHT、「グループ」として VG を選んで [OK] する。

しかし、このような2段階の検定は、検定の多重性の問題を起こす可能性がある。群馬大学の 青木繁伸教授や三重大学の奥村晴彦教授の数値実験によると、等分散であるかどうかにかかわら ず、2群の平均値の差のWelchの方法を多群に拡張した方法を用いるのが最適である。R では oneway.test()で実行できる(EZR でもできることは既に述べた)。上記、村落の身長への効果 をみる例では, oneway.test(HEIGHT ~ VG, data=sp)と打てば, Welch の拡張による一元配置 分散分析ができて, 以下の結果が得られる。

```
> oneway.test(HEIGHT ~ VG, data=sp)
One-way analysis of means (not assuming equal variances)
data: HEIGHT and VG
F = 7.5163, num df = 2.00, denom df = 18.77, p-value = 0.004002
```

クラスカル=ウォリス (Kruskal-Wallis) の検定と Fligner-Killeen の検定

多群間の差を調べるためのノンパラメトリックな方法としては、クラスカル=ウォリス (Kruskal-Wallis)の検定が有名である。R では、量的変数をY,群分け変数をCとすると、kruskal.test(Y~C)で実行できる。以下, Kruskal-Wallisの検定の仕組みを箇条書きで説明する。

- •「少なくともどれか1組の群間で大小の差がある」という対立仮説に対する「すべての群の 間で大小の差がない」という帰無仮説を検定する。
- まず2群の比較の場合の順位和検定と同じく、すべてのデータを込みにして小さい方から順に順位をつける(同順位がある場合は平均順位を与える)。
- 次に, 各群ごとに順位を足し合わせて, 順位和 R_i(i = 1, 2, ..., k; k は群の数) を求める。
- 各群のオブザーベーションの数をそれぞれ n_i とし、全オブザーベーション数を N としたとき、各群について統計量 B_i を $B_i = n_i \{R_i/n_i (N+1)/2\}^2$ として計算し、

$$B = \sum_{i=1}^{k} B_i$$

として *B* を求め, $H = 12 \cdot B/{N(N+1)}$ として *H* を求める。同順位を含むときは,すべての同順位の値について,その個数に個数の2乗から1を引いた値を掛けたものを計算し,その総和を *A* として,

$$H' = \frac{H}{1 - \frac{A}{N(N^2 - 1)}}$$

により H を補正した値 H'を求める。

*H*または *H*′から表を使って(データ数が少なければ並べかえ検定によって)有意確率を求めるのが普通だが, *k*≥4 で各群のオブザーベーション数が最低でも4以上か,または *k*=3 で各群のオブザーベーション数が最低でも5以上なら,*H*や *H*′が自由度 *k*−1のカイ二乗分布に従うものとして検定できる。

上の例で村落の身長への効果をみるには,Rコンソールでは,kruskal.test(HEIGHT ~ VG, data=sp) と打てば結果が表示される。 EZR では、「統計解析」、「ノンパラメトリック検定」、「3 群以上の間の比較 (Kruskal-Wallis の検定)」と選び、「グループ」として VG を、「目的変数」として HEIGHT を選び、[OK] をク リックするだけである。

Fligner-Killeen の検定は、グループごとのばらつきに差が無いという帰無仮説を検定するためのノンパラメトリックな方法である。Bartlett の検定のノンパラメトリック版といえる。上の例で、身長のばらつきに村落による差が無いという帰無仮説を検定するには、R コンソールでは、fligner.test(HEIGHT ~ VG, data=sp)とすればよい。

EZR のメニューには入っていないので,必要な場合はスクリプトウィンドウにコマンドを打ち,選択した上で「実行」ボタンをクリックする。

検定の多重性の調整を伴う対比較

多重比較の方法にはいろいろあるが,良く使われているものとして,ボンフェローニ (Bonferroni) の方法,ホルム (Holm)の方法,シェフェ (Scheffé)の方法,テューキー (Tukey)の HSD,ダネット (Dunnett)の方法,ウィリアムズ (Williams)の方法がある。最近は,FDR(False Discovery Rate)法 もかなり使われるようになった。ボンフェローニの方法とシェフェの方法は検出力が悪いので,特 別な場合を除いては使わない方が良い。テューキーの HSD またはホルムの方法が薦められる。な お,ダネットの方法は対照群が存在する場合に対照群と他の群との比較に使われるので,適用場面 が限定されている*³⁰。ウィリアムズの方法は対照群があって他の群にも一定の傾向が仮定される 場合には最高の検出力を発揮するが,ダネットの方法よりもさらに限られた場合にしか使えない。

テューキーの HSD は平均値の差の比較にしか使えないが,ボンフェロー二の方法,ホルムの方法, FDR 法は位置母数のノンパラメトリックな比較にも,割合の差の検定にも使える。R コンソールでは,pairwise.t.test(),pairwise.wilcox.test(),pairwise.prop.test() という関数で,ボンフェローニの方法,ホルムの方法,FDR 法による検定の多重性の調整ができる。fmsbライブラリを使えば,pairwise.fisher.test() により,Fisherの直接確率法で対比較をした場合の検定の多重性の調整も可能である。

なお,Bonferroniのような多重比較法でp値を調整して表示するのは表示上の都合であって,本 当は帰無仮説族レベルでの有意水準を変えているのだし,p.adjust.method="fdr"でも,p値も有意水 準も調整せず,帰無仮説の下で偶然p値が有意水準未満になって棄却されてしまう確率(誤検出率) を計算し,帰無仮説ごとに有意水準に誤検出率を掛けてp値との大小を比較して検定するというこ とになっているが,これは弱い意味で帰無仮説族レベルでの有意水準の調整を意味する,と原論文 に書かれているので,統計ソフトがp値を調整した値を出してくるのはやはり表示上の都合で,本 当は有意水準を調整している(参照:Benjamini Y, Hochberg Y: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Royal Stat. Soc. B, 57: 289-300, 1995.)。

^{*&}lt;sup>30</sup> ただし,対照群が他の群との比較のすべての場合において差があるといいたい場合は,多重比較をするのではなく て, t 検定を繰り返して使うのが正しいので,注意が必要である。もちろんそういう場合は多くはない。

Bonferroni, Holm, FDR という3つの多重比較の考え方はシンプルでわかりやすいので,ここ で簡単にまとめておく。k 個の帰無仮説について検定して得られた p 値が p(1)<p(2)<...<p(k) だと すると,有意水準 α で帰無仮説族の検定をするために,Bonferroni は p(1) から順番に α/k と比較 し,p(i) $\geq \alpha/k$ になったところ以降判定保留,Holm は p(i) $\geq \alpha/i$ となったところ以降判定保留と する。有意水準 α で fdr をするには,まず p(k) を α と比較し,次に p(k-1) を $\alpha \times (k-1)/k$ と比較し, と p 値が大きい方から比較していき,p(i)< $\alpha \times i/k$ となったところ以降,i 個の帰無仮説を棄却す る。R の pairwise.*.test() では,Bonferroni ならすべての p 値が k 倍されて表示,Holm では小さい 方から i 番目の p 値が i 倍されて表示,fdr では小さい方から i 番目の p 値が k/i 倍されて表示され ることによって,表示された p 値を共通の α との大小で有意性判定ができるわけだが,これは表示 上の都合である。(残念ながら,FDR 法はまだ Remdr や EZR のメニューには含まれていない)

実例を示そう。先に示した3村落の身長データについて、どの村落とどの村落の間で身長に差が あるのかを調べたい場合, R コンソールでは,

pairwise.t.test(sp\$HEIGHT, sp\$VG, p.adjust.method="bonferroni")

とすれば、2 村落ずつのすべての組み合わせについてボンフェローニの方法で有意水準を調整した p 値が表示される("bonferroni"は"bon"でも良い。また, pairwise.*系の関数では data= というオプションが使えないので、データフレーム内の変数を使いたい場合は、予めデータフレー ムを attach() しておくか、またはここで示したように、変数指定の際に一々、"データフレーム 名\$"を付ける必要がある)。

また,pairwise.wilcox.test(sp\$HEIGHT,sp\$VG,p.adjust.method="bonferroni") とす れば、ボンフェローニの方法で有意水準を調整した、すべての村落間での身長の差を順位和検 定した結果を出してくれる。これらの関数で,p.adjust.method を指定しなければホルムの方 法になるが、明示したければ,p.adjust.method="holm"とすればよい。FDR 法を使うには、 p.adjust.method="fdr"とすればよい。R でもボンフェローニが可能なのは、一番単純な方法 であるという理由と、ホルムの方法に必要な計算がボンフェローニの計算を含むからだと思 われる。なお、R を使って分析するのだけれども、データがきれいな正規分布をしていて、か つ古典的な方法の論文しか accept しない雑誌に対してどうしても投稿したい、という場合は、 TukeyHSD(aov(HEIGHT ~ VG, data=sp)) などとして、テューキーの HSD を行うことも可能で ある。

EZR では、一元配置分散分析メニューのオプションとして実行できる。「統計解析」「連続変数の解析」「3 群以上の平均値の比較(一元配置分散分析 one-way ANOVA)」を選んで、「目的変数」として HEIGHT を、「比較する群」として VG を選んでから、下の方の「 \downarrow 2 組ずつの比較 (post-hoc 検定) は比較する群が1つの場合のみ実施される」から欲しい多重比較法の左側のボックスにチェックを入れてから「OK」ボタンをクリックする。

いずれのやり方をしても、TukeyHSD の場合だと、2 群ずつの対比較の結果として、差の推定値と 95% 同時信頼区間に加え、Tukey の方法で検定の多重性を調整した p 値が下記のように表示さ

れ、検定の有意水準が5%だったとすると、ZとYの差だけが有意であることがわかる。

Dunnett の多重比較法

Dunnett の多重比較は, コントロールと複数の実験群の比較というデザインで用いられる。以下, 簡単な例で示す。例えば, 5人ずつ3群にランダムに分けた高血圧患者がいて, 他の条件(食事療 法,運動療法など)には差をつけずに, プラセボを1ヶ月服用した群の収縮期血圧(mmHg単位) の低下が5,8,3,10,15で, 代表的な薬を1ヶ月服用した群の低下は20,12,30,16,24で, 新薬を 1ヶ月服用した群の低下が31,25,17,40,23だったとしよう。このとき, プラセボ群を対照とし て, 代表的な薬での治療及び新薬での治療に有意な血圧降下作用の差が出るかどうかを見たい(悪 くなるかもしれないので両側検定で)という場合に, Dunnett の多重比較を使う。R でこのデータ を bpdown というデータフレームに入力して Dunnett の多重比較をするためには, 次のコードを実 行する。

```
bpdown <- data.frame(
medicine=factor(c(rep(1,5),rep(2,5),rep(3,5)), labels=c("プラセボ","代表薬","新
薬")),
sbpchange=c(5, 8, 3, 10, 15, 20, 12, 30, 16, 24, 31, 25, 17, 40, 23))
summary(res1 <- aov(sbpchange ~ medicine, data=bpdown))
library(multcomp)
res2 <- glht(res1, linfct = mcp(medicine = "Dunnett"))
confint(res2, level=0.95)
summary(res2)
```

つまり,基本的には,multcomp ライブラリを読み込んでから,分散分析の結果を glht() 関数に渡し,linfct オプションで,Dunnett の多重比較をするという指定を与えるだけである。 multcomp ライブラリのバージョン 0.993 まで使えた simtest() 関数は,0.994 から使えなくなっ たので注意されたい。 EZR では、まず「ファイル」>「データのインポート」>「ファイルまたはクリップボード, URL からテキストデータを読み込む」として、「データセット名を入力」の右側のボックスに bpdown と入力し、「データファイルの場所」として「インターネットの URL」の右側のラジ オボタンをクリックし、「フィールドの区切り記号」を「タブ」にして「OK」ボタンをクリッ クする。表示される URL 入力ウィンドウに http://minato.sip21c.org/bpdown.txt と 打って「OK」ボタンをクリックすれば、上記データを読み込むことができる。

そこで「統計解析」の「連続変数の解析」から「3 群以上の平均値の比較(一元配置分散分析 one-way ANOVA)」を選んで、「目的変数」として sbpchange、「比較する群」として medicine を選び、「2 組ずつの比較 (Dunnett の多重比較)」の左のチェックボックスをチェックしてか ら「OK」ボタンをクリックすればいい。

なお、このデータで処理名を示す変数 medicine の値として o.placebo, 1.usual, 2.newdrug のように先頭に数字付けた理由は、それがないと水準がアルファベット順になってしまい、 Dunnett の解析において新薬群がコントロールとして扱われてしまうからである。

ノンパラメトリック検定の場合は、「統計解析」の「ノンパラメトリック検定」から「3群 以上の間の比較 (Kruskal-Wallis 検定)」と選び、「目的変数」を sbpchange、「グループ」を medicine にし、「2 組ずつの比較 (post-hoc 検定、Steel の多重比較)」の左のチェックボック スをチェックして「OK」ボタンをクリックすれば、Steel の多重比較が実行できる。

7.11 二元配置分散分析

本実習では、水の総硬度の分析で、3 種類の検水を2 通りの方法で測定するので、総硬度の値を、 検水の種類と測定方法という2つの要因によって説明することができる。共存物質によって測定方 法が総硬度に与える影響は変わる可能性があるので、検水の種類と測定方法の交互作用効果も検証 する必要がある。

サンプルデータは、http://minato.sip21c.org/pubhealthpractice/waterhardness.csv から入手できる。EZR では、「ファイル」>「データのインポート」>「ファイルまたはクリップ ボード、URL からテキストデータを読み込む」として、「データセット名を入力」の右側のボック スに hardness と入力し、「データファイルの場所」として「ローカルファイルシステム」の左側 のラジオボタンがチェックされていることを確認し、「フィールドの区切り記号」を「カンマ」に して「OK」ボタンをクリックする。ファイル選択ウィンドウが開くので、予めダウンロードして おいた waterhardness.csv を選んで OK する。

分析は、「統計解析」>「量的な変数の解析」>「複数の因子での平均値の比較(多元配置分散分析 multi-way ANOVA)」を選んで表示されるウィンドウで、「目的変数(1つ選択)」で HARDNESS が選択されていることを確認し、「因子(1つ以上選択)」で METHOD と SAMPLE を選択する(上の方に書かれている通り、 Ctrl キーを押しながらクリックすれば 2 つ以上選択できる)。「交互作用の解析も行う(群別変数が 3 個以下の場合)」の左にチェックが入っていることを確認し、「OK」

をクリックすると,自動的に標準偏差のエラーバー付きの棒グラフが描かれ,出力ウィンドウには 以下の結果がでる。

```
Anova Table (Type III tests)
Response: HARDNESS
                            Sum Sq Df F value Pr(>F)
                            484128 1 1097.5194 3.628e-13 ***
(Intercept)
Factor1.METHOD
                               128 1
                                        0.2902
                                                  0.6000
                            222629 2 252.3506 1.569e-10 ***
Factor2.SAMPLE
Factor1.METHOD:Factor2.SAMPLE 229 2
                                        0.2599
                                                  0.7753
Residuals
                              5293 12
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Factor1.METHOD と Factor1.METHOD:Factor2.SAMPLE の Pr(>F) の値は 0.05 より大きい ので総硬度の測定値は,測定方法も測定方法と検水の交互作用も有意には影響しておらず, Factor2.SAMPLE の Pr(>F) は 1.569e-10 (e-**はコンピュータの浮動小数点表示で, 10^{-**} を 意味する。つまり, 1.569×10⁻¹⁰) と, 0.05 よりずっと小さいので,検水間では有意な差があるこ とがわかる。

7.12 2つの量的な変数間の関係

2つの量的な変数間の関係を調べるための,良く知られた方法が2つある。相関と回帰である。 いずれにせよ,まず散布図を描くことは必須である。

本実習では,大気・環境の粉塵濃度と騒音と車の通過台数(雨天時は人の通過人数)について, お互いの関係を調べる際に,これらの方法を用いる。

相関と回帰の違い

大雑把に言えば,相関が変数間の関連の強さを表すのに対して,回帰はある変数の値のばらつき がどの程度他の変数の値のばらつきによって説明されるかを示す。回帰の際に,説明される変数を (従属変数または)目的変数,説明するための変数を(独立変数または)説明変数と呼ぶ。2つの 変数間の関係を予測に使うためには,回帰を用いる。

相関分析

一般に,2個以上の変量が「かなりの程度の規則正しさをもって,増減をともにする関係」の ことを相関関係 (correlation) という。相関には正の相関 (positive correlation) と負の相関 (negative correlation) があり,一方が増えれば他方も増える場合を正の相関,一方が増えると他方は減る場合 を負の相関と呼ぶ。例えば,身長と体重の関係は正の相関である。

散布図で相関関係があるように見えても,見かけの相関関係 (apparent correlation) であった

り*³¹,擬似相関 (spurious correlation) であったり*³²することがあるので,注意が必要である。

相関関係は増減をともにすればいいので,直線的な関係である必要はなく,二次式でも指数関数 でもシグモイドでもよいが,通常,直線的な関係をいうことが多い(指標はピアソンの積率相関係 数)。曲線的な関係の場合,直線的になるように変換したり,ノンパラメトリックな相関の指標(順 位相関係数)を計算する。順位相関係数としてはスピアマンの順位相関係数が有名である。

ピアソンの積率相関係数 (Pearson's Product Moment Correlation Coefficient) は, r という記号で 表し, 2つの変数 $X \ge Y$ の共分散を X の分散と Y の分散の積の平方根で割った値であり,範囲は [-1,1] である。最も強い負の相関があるとき r = -1,最も強い正の相関があるとき r = 1,まった く相関がないとき (2つの変数が独立なとき),r = 0 となることが期待される。X の平均を \bar{X} , Yの平均を \bar{Y} と書けば,次の式で定義される。

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

相関係数の有意性の検定においては,母相関係数がゼロ(=相関が無い)という帰無仮説の下で, 実際に得られている相関係数よりも絶対値が大きな相関係数が偶然得られる確率(これを「有意確 率」という。通常,記号 p で表すので,「p 値」とも呼ばれる)の値を調べる。偶然ではありえな いほど珍しいことが起こったと考えて,帰無仮説が間違っていたと判断するのは有意確率がいくつ 以下のときか,という水準を有意水準といい,検定の際には予め有意水準を(例えば 5% と)決め ておく必要がある。例えば p = 0.034 であれば,有意水準 5% で有意な相関があるという意思決定 を行なうことができる。p 値は,検定統計量

$$t_0 = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

が自由度 n-2のt分布に従うことを利用して求められる。

本実習で相関を検討するのは、粉塵と騒音と交通量(雨天でなければ車の通過台数、屋内 の実習になった場合は通行する人数)の関係である。粉塵と騒音のサンプルデータは、http: //minato.sip21c.org/pubhealthpractice/dust-noise-cars.csv からダウンロードするこ とができる。既に述べた通り、変数としては、TIME、small、large、PM2.5、noise、cars が入っ ている。EZR への読み込みは、「ファイル」>「データのインポート」>「ファイルまたはクリッ プボード、URL からテキストデータを読み込む」として、「データセット名を入力」の右側のボッ クスに dnc と入力し、「データファイルの場所」として「ローカルファイルシステム」の左側のラ ジオボタンがチェックされていることを確認し、「フィールドの区切り記号」を「カンマ」にして 「OK」ボタンをクリックする。ファイル選択ウィンドウが開くので、予めダウンロードしておいた dust-noise-cars.csv を選んで OK する。

^{*31} 例)同業の労働者集団の血圧と所得。どちらも一般に加齢に伴って増加する。

^{*32} 例)ある年に日本で植えた木の幹の太さと同じ年に英国で生まれた少年の身長を15年分,毎年1回測ったデータには相関があるようにみえるが,直接的な関係はなく,どちらも時間経過に伴って大きくなるために相関があるように見えているだけである。

まず PM2.5 と騒音と交通量の散布図行列を描く。「グラ フと表」>「散布図行列」を選んで現れるウィンドウで、変 数を選択(3つ以上)の中で、cars、noise、PM2.5 を、Ctrl キーを押しながらクリックすることで選択する。最小2乗 直線の左側のボックスにチェックが入っていたら外してか ら「OK」ボタンをクリックすると、右図が表示される。互 いに正の相関関係がありそうにみえる。

「統計解析」の「連続変数の解析」から「相関係数の検 定(Pearson の積率相関係数)」を選び,変数として,例え ば PM2.5 と noise を選ぶ*³³。検定については「対立仮説」

の下に「両側」「相関<0」「相関>0」の3つから選べるようになっているが,通常は「両側」で よい。OK をクリックすると,出力ウィンドウに次の内容が表示される。

最下行にまとめられているように, 粉塵の個数濃度と騒音の関係について求めたピアソンの積率 相関係数は, *r* = 0.26 (95% 信頼区間が [-0.11,0.57]) であり*³⁴, p-value = 0.169 より,「相関 が無い」可能性を棄却することはできない。なお,相関の強さは相関係数の絶対値の大きさによっ て判定し,伝統的に 0.7 より大きければ「強い相関」, 0.4~0.7 で「中程度の相関」, 0.2~0.4 で「弱 い相関」とみなすのが目安なので,この結果は弱い相関があるかもしれないが統計学的に有意でな いと解釈される。

なお,このデータは時系列で連続測定した値なので,測定値間が独立であることを仮定できず, 本当は時系列的な変化の向きも検討しなくてはいけないが,そこまでは EZR のメニューには含ま れていないので,本実習では扱わない。

^{*&}lt;sup>33</sup> [Ctrl]キーを押しながら変数名をクリックすれば複数選べるが,一度には2つずつしか検定できない仕様になってい る。他の組合せも調べること。なお,そうすると厳密には検定の多重性の問題が生じるので,有意水準または有意確 率を調整すべきである。

^{*&}lt;sup>34</sup> 95% 信頼区間の桁を丸めて示す場合,真の区間を含むようにするために,四捨五入ではなく,下限は切り捨て,上限 は切り上げにするのが普通である。

• 順位相関係数 -

スピアマンの順位相関係数 ρ は^{*a*}, 値を順位で置き換えた(同順位には平均順位を与えた)ピアソンの積率相関係数と同じである。 X_i の順位を R_i , Y_i の順位を Q_i とかけば,

$$\rho = 1 - \frac{6}{n(n^2 - 1)} \sum_{i=1}^{n} (R_i - Q_i)^2$$

となる。スピアマンの順位相関係数がゼロと差がないことを帰無仮説とする両側検定は、サンプルサイズが 10 以上ならばピアソンの場合と同様に、

$$T = \frac{\rho \sqrt{n-2}}{\sqrt{1-\rho^2}}$$

が自由度n-2のt分布に従うことを利用して行うことができる。ケンドールの順位相関係数 τ は,

$$\tau = \frac{(A-B)}{n(n-1)/2}$$

によって得られる。ここで A は順位の大小関係が一致する組の数, B は不一致数である。

R コンソールでスピアマンの順位相関係数を計算するには,cor.test() 関数の中で, method="spearman"またはmethod="kendall"と指定すれば良い。EZR では,「統計解析」「ノンパラ メトリック検定」「相関係数の検定(Spearman の順位相関係数)」を選んで表示されるウィンドウで相関 を検討したい変数を選び,解析方法のところで Spearman の横のラジオボタンを選んで OK ボタンをク リックすれば計算できる。

 a ピアソンの相関係数の母相関係数を ρ と書き、スピアマンの順位相関係数を r_s と書く流儀もある。

回帰モデルの当てはめ

回帰は,従属変数のばらつきを独立変数のばらつきで説明するというモデルの当てはめである。 十分な説明ができるモデルであれば,そのモデルに独立変数の値を代入することによって,対応す る従属変数の値が予測あるいは推定できるし,従属変数の値を代入すると,対応する独立変数の値 が逆算できる。こうした回帰モデルの実用例の最たるものが検量線である。検量線とは,実験にお いて予め濃度がわかっている標準物質を測ったときの吸光度のばらつきが,その濃度によってほぼ 完全に(通常98%以上)説明されるときに(そういう場合は,散布図を描くと,点々がだいたい 直線上に乗るように見える),その関係を利用して,サンプルを測ったときの吸光度からサンプル の濃度を逆算するための回帰直線である(曲線の場合もあるが,通常は何らかの変換をほどこし, 線形回帰にして利用する)。

検量線の計算には, (A) 試薬ブランクでゼロ点調整をした場合の原点を通る回帰直線を用いる場合と, (B) 純水でゼロ点調整をした場合の切片のある回帰直線を用いる場合がある。例えば, 濃度の決まった標準希釈系列 (0, 1, 2, 5, 10 $\mu g/\ell$) について, 純水でゼロ点調整をしたときの吸光度が, (0.24, 0.33, 0.54, 0.83, 1.32) だったとしよう。吸光度の変数を y, 濃度を x と書けば, 回帰モデル は y = bx + a とおける。係数 $a \ge b$ (a は切片, b は回帰係数と呼ばれる) は, 次の偏差平方和を

最小にするように,最小二乗法で推定される。

$$f(a,b) = \sum_{i=1}^{5} (y_i - bx_i - a)^2$$

この式を解くには, f(a,b) を a ないし b で偏微分したものがゼロに等しいときを考えればいいので,次の2つの式が得られる。

$$b = \frac{\sum_{i=1}^{5} x_i y_i / 5 - \sum_{i=1}^{5} x_i / 5 \cdot \sum_{i=1}^{5} y_i / 5}{\sum_{i=1}^{5} x_i^2 / 5 - \left(\sum_{i=1}^{5} x_i / 5\right)^2}$$
$$a = \sum_{i=1}^{5} y_i / 5 - b \cdot \sum_{i=1}^{5} x_i / 5$$

これらの*a*と*b*の値と,未知の濃度のサンプルについて測定された吸光度(例えば 0.67 としよう)から,そのサンプルの濃度を求めることができる。注意すべきは,サンプルについて測定された吸光度が,標準希釈系列の吸光度の範囲内になければならないことである。回帰モデルが標準希釈系列の範囲外でも直線性を保っている保証は何もないのである*³⁵。

R コンソールでは, lm() (linear model の略で線形モデルの意味)を使って, 次のようにデータ に当てはめた回帰モデルを得ることができる。

y <- c(0.24, 0.33, 0.54, 0.83, 1.32)
x <- c(0, 1, 2, 5, 10)
線形回帰モデルを当てはめる
res <- lm(y ~ x)
詳しい結果表示
summary(res)
散布図と回帰直線を表示する
plot(y ~ x)
abline(res)
吸光度 0.67 に対応する濃度を計算する
(0.67 - res\$coef[1])/res\$coef[2]</pre>

結果は次のように得られる。

^{*&}lt;sup>35</sup> 回帰の外挿は薦められない。サンプルを希釈したり濃縮したりして吸光度を再測定し,標準希釈系列の範囲におさめ ることをお薦めする。

```
Call:
lm(formula = y \sim x)
Residuals:
      1
               2
                        3
                                4
                                         5
-0.02417 -0.04190 0.06037 0.02718 -0.02147
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.26417
                       0.03090 8.549 0.003363 **
            0.10773
                       0.00606 17.776 0.000388 ***
х
___
                 '***'
                               '**'
                                    0.01 '*'
                                              0.05 '.' 0.1 '' 1
Signif. codes: 0
                        0.001
Residual standard error: 0.04894 on 3 degrees of freedom
Multiple R-squared: 0.9906,
                              Adjusted R-squared: 0.9875
              316 on 1 and 3 DF, p-value: 0.0003882
F-statistic:
```

推定された切片は *a* = 0.26417,回帰係数は *b* = 0.10773 である。また,このモデルはデータの分 散の 98.75% (0.9875) を説明していることが, Adjusted R-squared からわかる。また,p-value は,吸光度の分散がモデルによって説明される程度が誤差分散によって説明される程度と差が無い という帰無仮説の検定の有意確率である。

0.67 という吸光度に相当する濃度は、3.767084 となる。したがって、この溶液の濃度は、3.8 $\mu g/\ell$ だったと結論することができる。

本実習では、二酸化窒素濃度の計算で検量線が必要となる。上記のような計算をするために は、データ入力に工夫が必要である。Excel などの表計算ソフトで、まず1行目に SAMPLE, CONC、ABS と入力する。1列目の最初の18行はSと入力し、次いでA、B、C、D、Eを3行 ずつ入力する。2列目は最初の18行は標準希釈系列の濃度なので、0、2、4、8、12、16を3行 ずつ入力する。それ以降はサンプルであり濃度は不明なのでブランクのままで良い。3列目は プレートリーダで印字された吸光度の測定値を入力する。ただし3列目の測定値で triplicate の 中で1つだけ外れた値があるときは、1列目をXとする。Excel で入力した場合は、「形式を選 択して保存」で「テキスト (コンマ区切り)」でデータをファイルに保存する。サンプルデータ を http://minato.sip21c.org/pubhealthpractice/workingcurve.csv に置くので、ダウン ロードしておく。

EZR に読み込むには、「ファイル」>「データのインポート」>「ファイルまたはクリップボード、URL からテキストデータを読み込む」として、「データセット名を入力」の右側のボックスにWC と入力し、「データファイルの場所」として「ローカルファイルシステム」の左側のラジオボタンがチェックされていることを確認し、「フィールドの区切り記号」が「カンマ」であることを確認してから「OK」ボタンをクリックする。ファイル選択ウィンドウが開くので、予めダウンロードしておいた workingcurve.csv を選んで OK する。

まず,標準希釈系列のデータを使って,検量線を計算する。「統計解析」>「連続変数の解析」> 「線形回帰(単回帰,重回帰)」と選び,「モデル名を入力」に WC1 と入力し,「目的変数(1つ選 択)」で ABS,「説明変数(1つ以上選択)」で CONC を選び,「モデル解析用に解析結果をアクティ ブモデルとして残す」の左のチェックボックスにチェックを入れる。さらに「↓一部のサンプルだ けを解析対象にする場合の条件式。例: age > 50 & Sex == 0 や age < 50 | Sex == 1」の下のボッ クスに SAMPLE=="S"と入力して [OK] をクリックする。

出力ウィンドウに結果が表示される(後述する多重共線性をチェックするために VIF を計算しよ うとしてエラー: model contains fewer than 2 terms と表示されるが気にしなくて良い)。 下の方に日本語でまとめた結果が表示されるが,自由度調整済重相関係数の二乗が含まれないの で,上の方の結果を見る。自由度調整済重相関係数の二乗が 0.987 なので,それなりに当てはまり は良い。回帰式の切片は WC1\$coef[1] か coef(WC1)[1] で参照でき,回帰係数は WC1\$coef[2] か coef(WC1)[2] で参照できる。

52

Call: lm(formula = ABS ~ CONC, data = WC, subset = SAMPLE == "S") Residuals: Min 1Q Median 3Q Max -0.0239223 -0.0080413 -0.0002198 0.0107207 0.0221966 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.0027207 0.0055576 -0.49 0.632 CONC 0.0209703 0.0006014 34.87 8.97e-16 *** _ _ _ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.01369 on 15 degrees of freedom Multiple R-squared: 0.9878, Adjusted R-squared: 0.987 F-statistic: 1216 on 1 and 15 DF, p-value: 8.967e-16

次に,この検量線を使って,サンプルの吸光度から濃度を計算する。「アクティブデータセット」 >「変数の操作」>「計算式を入力して新たな変数を作成する」と選んで表示されるウィンドウで, 「新しい変数名」を CONC2 とし,「計算式」に (ABS-coef(WC1)[1])/coef(WC1)[2] と入力して 「OK」ボタンをクリックすると,新しい変数 CONC2 に,各サンプルの二酸化窒素濃度が得られる ので,それを一元配置分散分析に用いることができる。

このまま一元配置分散分析をするには、「統計解析」>「連続変数の解析」>「3 群以上の間の平 均値の比較(一元配置分散分析 one-way ANOVA)」で「目的変数(1つ選択)」で CONC2,「比較す る群(1つ以上選択)」で SAMPLE を選び、下の方の「↓一部のサンプルだけを……」の下の枠に、

と

SAMPLE %in% LETTERS[1:5]

打ってから「OK」すれば良い。

検量線以外の状況でも、同じやり方で線形回帰モデルを当てはめることができる。

粉塵濃度が騒音と交通量の両方で説明されるという重回帰モデルを考えよう。既に dnc という 名前でサンプルデータは読み込み済なので,ロゴのすぐ右の"データセット:"の右側をクリックし て dnc を指定して dnc データセットをアクティブにしてから,「統計解析」>「連続変数の解析」 >「線形回帰(単回帰,重回帰)」と選び,目的変数として PM2.5,説明変数として noise と cars を選び,[OK」ボタンをクリックすると出力ウィンドウに次の結果が得られる。重回帰モデルの解 釈については後述する。

```
Call:
lm(formula = PM2.5 \sim cars + noise, data = dnc)
Residuals:
  Min
          1Q Median
                       3Q
                              Max
-69.32 -35.50 -10.03 23.12 177.82
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1101.9891 213.1748 5.169 1.93e-05 ***
cars
              7.3197
                         3.1093 2.354
                                          0.0261 *
             0.2062
                         4.2964 0.048
noise
                                          0.9621
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 56.58 on 27 degrees of freedom
Multiple R-squared: 0.2253, Adjusted R-squared: 0.168
F-statistic: 3.927 on 2 and 27 DF, p-value: 0.03184
> vif(RegModel.7)
    cars
           noise
1.386756 1.386756
```

推定された係数の安定性を検定する

回帰直線のパラメータ(回帰係数 *b* と切片 *a*)の推定値の安定性を評価するためには, *t* 値が使われる。いま, *Y* と *X* の関係が *Y* = $a_0 + b_0 X + e$ というモデルで表されるとして, 誤差項 *e* が平均 0, 分散 σ^2 の正規分布に従うものとすれば, 切片の推定値 *a* も, 平均 a_0 , 分散 (σ^2/n)(1 + M^2/V)(ただし *M* と *V* は *x* の平均と分散)の正規分布に従い, 残差平方和 Q を誤差分散 σ^2 で割った Q/σ^2 が自由度 (*n* - 2)のカイ二乗分布に従うことから,

$$t_0(a_0) = \frac{\sqrt{n(n-2)}(a-a_0)}{\sqrt{(1+M^2/V)Q}}$$

が自由度 (n-2)の t 分布に従うことになる。

しかしこの値は a_0 がわからないと計算できない。 a_0 が0に近ければこの式で $a_0 = 0$ と置いた値 (つまり $t_0(0)$ 。これを切片に関する t 値と呼ぶ)を観測データから計算した値が $t_0(a_0)$ とほぼ一致 し、自由度 (n-2) の t 分布に従うはずなので、その絶対値は 95%の確率で t 分布の 97.5% 点(サ ンプルサイズが大きければ約 2 である)よりも小さくなる。つまり、データから計算された t 値が それより大きければ、切片は 0 でない可能性が高いことになるし、t 分布の分布関数を使えば、「切 片が 0 である」という帰無仮説に対する有意確率が計算できる。 回帰係数についても同様に,

$$t_0(b) = \frac{\sqrt{n(n-2)Vb}}{\sqrt{Q}}$$

が自由度 (n-2) の t 分布に従うことを利用して,「回帰係数が 0」であるという帰無仮説に対する有 意確率が計算できる。有意確率が充分小さければ,切片や回帰係数がゼロでない何かの値をとると いえるので,これらの推定値は安定していることになる。線形回帰をした結果の中の, Pr(>|t|) というカラムに,これらの有意確率が示されている。

重回帰モデルでは,個々の説明変数について推定される回帰係数は,他の説明変数の目的変数へ の影響を調整した上で,その変数独自の目的変数への影響を示す「偏回帰係数」である。しかし偏 回帰係数の値は,各変数の絶対的な大きさに依存しているので,各説明変数の目的変数への影響の 相対的な強さを示すものにはならない。そうした比較をしたければ,標準化偏回帰係数を計算す る。EZR のメニューにはこの機能はないが,重回帰モデルを残してあるので,そのオブジェクトを 使ったコマンドをスクリプトウィンドウに打つ。右上に「モデル:」とあるところの右側に,最後 に生成されたモデル名が表示されている。これが RegModel.7 だとすると,

csd <- sapply(RegModel.7\$model, sd)
print(coef(RegModel.7)*csd/csd[1])</pre>

とスクリプトウィンドウに打ち,この2行を選んでから,「実行」ボタンをクリックすれば,出 力ウィンドウに標準化偏回帰係数が表示される。

標準化偏回帰係数の代わりに,偏相関係数の二乗を使っても,それぞれの説明変数の目的変数への影響の相対的な寄与を示すことができる(Residualsの項を除く,すべての説明変数の偏相関係数の二乗を合計すると,次節で説明する重相関係数の二乗—ただし当然ながら自由度調整する前の値—になる)。最近の論文では,重回帰分析の結果の表としては,各説明変数に対して,偏回帰係数,標準誤差,95% 信頼区間の下限と上限,偏相関係数の二乗を示すことが多い。偏相関係数の二 乗を求めるには,重回帰分析のモデルが RegModel.7 だとすると,下記の二行を実行すれば良い。

SS <- anova(RegModel.7)["Sum Sq"]
SS/sum(SS)</pre>

回帰モデルを当てはめる際の留意点

身長と体重のように、どちらも誤差を含んでいる可能性がある測定値である場合には、一方を説 明変数、他方を目的変数とすることは妥当でないかもしれない(一般には、身長によって体重が決 まるなど方向性が仮定できれば、身長を説明変数にしてもよいことになっている)。また、最小二 乗推定の説明から自明なように、回帰式の両辺を入れ替えた回帰直線は一致しない。従って、どち らを目的変数とみなし、どちらを説明変数とみなすか、因果関係の方向性に基づいて(先行研究や 臨床的知見を参照し)きちんと決めるべきである。

回帰を使って予測をするとき,外挿には注意が必要である。とくに検量線は外挿してはいけな い。実際に測った濃度より濃かったり薄かったりするサンプルに対して,同じ関係が成り立つとい う保証はどこにもないからである(吸光度を y とする場合は,濃度が高くなると分子の重なりが増えるので飽和 (saturate) してしまい,吸光度の相対的な上がり方が小さくなっていき,直線から外れていく)。サンプルを希釈したり濃縮したりして,検量線の範囲内で定量しなくてはいけない。

重回帰モデルでは,説明変数同士に強い相関があると,係数推定が不安定になるのでうまくない。ごく単純な例でいえば,目的変数Yに対して説明変数群X1とX2が相加的に影響していると考えられる場合,lm(Y ~ X1+X2)という重回帰モデルを立てるとしよう。ここで,実はX1がX2と強い相関をもっているとすると,もしX1の標準化偏回帰係数の絶対値が大きければ,X2による効果もそちらで説明されてしまうので,X2の標準化偏回帰係数の絶対値は小さくなるだろう。 まったくの偶然で,その逆のことが起こるかもしれない。したがって,係数推定は必然的に不安定になる。この現象は,説明変数群が目的変数に与える線型の効果を共有しているという意味で,多重共線性(multicolinearity)と呼ばれる。

多重共線性があるかどうかを判定するには,説明変数間の散布図を1つずつ描いてみるなど,丁 寧な吟味をすることが望ましいが,各々の説明変数を,それ以外の説明変数の目的変数として重回 帰モデルを当てはめたときの重相関係数の2乗を1から引いた値の逆数をVIF(Variance Inflation Factor;定訳は不明だが,分散増加因子と訳しておく)として,VIFが10を超えたら多重共線性を 考えねばならないという基準を使う(Armitage et al., 2002)のが簡便である。多重共線性があると きは,拡張期血圧(DBP)と収縮期血圧(SBP)のように本質的に相関があっても不思議はないも のだったら片方だけを説明変数に使うとか,2つの変数を使う代わりに両者の差である脈圧を説明 変数として使うのが1つの対処法だが,その相関関係自体に交絡が入る可能性はあるし,情報量が 減るには違いない。変数を減らさずに調整する方法としては,centring という方法がある。

EZR で重回帰分析を実行すると,自動的に VIF は計算される。上の例では,どちらの変数についても小さい値なので,多重共線性は考えなくて良い。

7.13 文献

- 新谷歩 (2011) 今日から使える医療統計学講座【Lesson 3】サンプルサイズとパワー計算.週 刊医学界新聞, 2937 号*³⁶
- 青木繁伸 (2009) R による統計解析. オーム社
- 古川俊之(監修),丹後俊郎(著)(1983)医学への統計学.朝倉書店.
- 中澤 港 (2003) R による統計解析の基礎. ピアソン・エデュケーション.*37
- 中澤 港 (2007) R による保健医療データ解析演習. ピアソン・エデュケーション.*³⁸
- 神田善伸 (2012) EZR でやさしく学ぶ統計学~EBM の実践から臨床研究まで~,中外医学 社*³⁹.

^{*&}lt;sup>36</sup> http://www.igaku-shoin.co.jp/paperDetail.do?id=PA02937_06

^{*&}lt;sup>37</sup> http://minato.sip21c.org/statlib/stat-all-r9.pdf から全文ダウンロードできる。

^{*&}lt;sup>38</sup> http://minato.sip21c.org/msb/medstatbookx.pdf から全文ダウンロードできる。

^{*39} http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmed.html

索引

EZR, 13, 15–17, 19, 20, 27–30, 33–37, 39, 41, 42, 44, 46–48, 51, 54, 55

pH, 9

一元配置分散分析, 7, 14, 18-21, 37-40, 42, 44, 52

吸光度, 2, 13, 17, 20, 48-52, 55

硬度, 7, 9, 44, 45

重回帰分析, 54, 55 自由度, 19, 32, 34, 38–40, 46, 48, 51, 53, 54 自由度調整済重相関係数の二乗, 51

多重共線性, 51, 55

電気伝導度,9

二元配置分散分析, 7, 44

標準化偏回帰係数,54,55

遊離残留塩素,9